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Taxol (paclitaxel) is awidely used anti-cancer drug with a complex
biosynthetic pathway that has puzzled biochemists for decades.

Owing to inefficient chemical synthesis, Taxol supply depends on

costly semi-synthesis. Elucidating the Taxol biosynthesis will solve
along-standing question in biochemistry and enable cost-effective
production using biotechnological methods. While recent advances have
improved our understanding of the steps leading up to the intermediate
baccatinlll, the final steps of the pathway remain elusive. Here we use
gene co-expression analysis, chemically synthesized intermediates

and a stepwise learning-by-building approach to reveal the enzymes

that catalyse the final two modifications, that is, C2’a hydroxylation

and 3’-N benzoylation, which are essential for Taxol’s bioactivity. To
replace the current semi-synthetic method of Taxol production, we
reconstruct the late pathway in yeast and synthesize Taxol from the
readily available intermediate baccatin Ill. This work provides a complete
understanding of Taxol biosynthesis and establishes a foundation for its
biotechnological production.

Taxol is among the most commonly used chemotherapeutic drugs,
effectivein the treatment of breast, ovarian, cervical, nasopharyngeal
and non-small cell lung cancer’. It exerts its anti-mitotic activity by
preventing the disassembly of microtubules?. Initially isolated from the
inner bark of the mature Pacific yew tree (Taxus brevifolia)**, sourcing
Taxolfromyew treesis not viable owing toits remarkably low content
inthebark. Chemical synthesis of Taxol is also inefficient because of its
complex chemicalstructure®”. Consequently, pharmaceutical Taxol is
currently produced either from Taxus cell culture or by semi-synthesis
from more available plant-derived taxoids. Both methods are costly,
making Taxol and its derivatives (docetaxel and cabazitaxel) among the
highest-priced small molecule active pharmaceutical ingredients®. To
improve Taxol supply, biotechnological production presents a promis-
ing alternative. However, progress has been hindered by incomplete
knowledge of the biosynthetic pathway.

Theremarkably complex structure of Taxol has promptedintense
researchintoits biosynthesis for over 30 years. The pathway is believed
toinvolve atleast18 biosynthetic steps. Early investigationsin the 1990s
established the first step as the cyclization of geranylgeranyl diphos-
phate to the basic diterpene scaffold, taxadiene, by the enzyme taxa-
diene synthase®’. Subsequent studies revealed several cytochrome
P450 (CYP) enzymes that oxidize the taxadiene structure' ' and
acyltransferases that further decorate the oxygenated taxoids2°.
However, further progress was hampered by the lack of comprehensive
genomicand transcriptomicinformation. The recent genome sequenc-
ing of two Taxol-producing yew species?-** has rekindled efforts to
elucidate the Taxol pathway. Several studies have since contributed to
understanding the early steps leading to the key intermediate baccatin
III*¥. These studies revisited earlier proposed biosynthetic schemes,

discovering missing oxidase enzymes® %, accessory proteins essential
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Fig. 1| The final steps of Taxol biosynthesis. a, The pathway for the synthesis of B-phenylalanoyl-CoA. b, The Taxol biosynthetic pathway from 10-deacetyl-baccatin III.
The new enzymes identified in this study (T2’OGD and T3’NBT) are shown in blue. Previously reported enzymes are shown in black.

for optimal enzyme function? and an elaborate acetylation-mediated
protection-deprotection biosynthetic mechanism”. These find-
ings revealed that the steps leading to baccatin Ill were more com-
plex than previously anticipated and highlighted the importance
of critically reviewing previously proposed biosynthetic steps in
Taxol biosynthesis.

Despite this progress, our knowledge of the final steps from
baccatin Il to Taxol remains incomplete. There are five putative
enzymatic steps in the conversion of baccatin Ill to Taxol: the iso-
merization of a-phenylalanine to 3-phenylalanine, the activation
of B-phenylalanine by coenzyme A (CoA), the addition of the p-
phenylalanine moiety to the C13 position of baccatin IlI, the oxida-
tion of the B-phenylalanyl side chain at C2’ and the addition of a

benzoyl group atits 3’-N position (Fig. 1). Although at least one puta-
tive enzyme for each step has been proposed'®******, the charac-
terization of some steps was based on the indirect observation of
downstream products®**, making their functional assignment incon-
clusive. One critical such step is the oxidation of the 3-phenylalanyl
side chainat C2’, for whicha CYP enzyme, TB506, has been proposed.
However, its proposed activity has not been supported by experi-
ments directly demonstrating the oxidation of the B-phenylalanyl
side chain and only implied on the basis of the observation of Taxol
productionin plant cells or cell extracts®***, which may be influenced
by the presence of host plant enzymes. Furthermore, the identification
of 3’-N-debenzoyl-2’-deoxy-taxol N-benzoyltransferase (DBTNBT),
the benzoyltransferase proposed to be responsible for the final step
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Fig. 2| Biosynthesis of the Taxol intermediate N-debenzoyl-taxol (3) from
N-debenzoyl-2’-deoxy-taxol (2) is catalysed by taxoid-2’-oxoglutarate-
dependent dioxygenase. a, Establishing the biosynthesis of N-debenzoyl-
2’-deoxy-taxol (2) in tobacco. Extracted ion chromatograms (EICs, positive)

of extracts of tobacco leaves show the levels of baccatin Il (1, C;H;,0,,",
m/z=587.2487 + 0.01) and N-debenzoyl-2’-deoxy-taxol (2, C,oH,sNO,,",
m/z=734.3171+ 0.01). For each chromatogram, the corresponding transiently
produced enzymes (PAM, BAPT and/or CoAL(A312G)) are shown as solid

green squares. Solid blue squares indicate the supply of exogenous substrate
(200 mg I B-phenylalanine (B-phe) and/or 200 mg 1" baccatin Ill). Open squares
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indicate the absence of the corresponding enzyme or substrate. The formation
of B-phenylalanine by PAM is sufficient to drive efficient biosynthesis of
N-debenzoyl-2’-deoxy-taxol (2) since the supply of exogenous 3-phenylalanine
does not increase the N-debenzoyl-2’-deoxy-taxol (2) levels. b, The biosynthesis
of N-debenzoyl-taxol (3) in tobacco. EICs (positive) show the levels of baccatin

111 (1), N-debenzoyl-2’-deoxy-taxol (2) and N-debenzoyl-taxol (3, C,oH,sNOy5",
m/z=750.3120 + 0.01). TB506, a CYP enzyme previously proposed to hydroxylate 2,
cannot synthesize 3. The newly identified T2’OGD can efficiently synthesize 3
when 2is present (either provided by the coordinated action of PAM, BAPT and
CoAL(A312G) or supplied exogenously at 50 mg 1™).

of the pathway, was based on its ability to benzoylate a surrogate
substrate, N-debenzoyl-2’-deoxy-taxol, and not its native substrate
N-debenzoyl-taxol®. Thus, elucidating these final steps is essential
to completing the Taxol pathway and advancing its biotechnological
production.

Here we address these gaps by systematically identifying and
validating the enzymes responsible for the final steps of Taxol biosyn-
thesis. By integrating gene co-expression analysis, chemical synthesis
of intermediates and functional characterization in both plant and
microbial systems, we provide experimental evidence for the enzymes
catalysing the critical C2” hydroxylation and 3’-N benzoylation steps.
These findings complete the Taxol biosynthetic pathway and lay the
foundation for scalable and sustainable Taxol productionin engineered
microbial or plant hosts.

Results and discussion

Establishing the biosynthesis of N-debenzoyl-2’-deoxy-taxol
We set out to validate the previously proposed activities using a
learning-by-building approach, reconstructing the pathway step
by step. Given that transient heterologous gene expression in
tobacco leaves is an efficient and reliable method to characterize
plant enzyme activity***, we opted to use Nicotiana benthamiana
(hereafter tobacco) for pathway reconstruction. Additionally, as pre-
vious efforts in the elucidation of Taxol biosynthesis were hampered
by the lack of isolated or chemically synthesized pathway intermedi-
ates, we chemically synthesized five putative pathway intermediates
to use as substrates or standards: N-debenzoyl-2’-deoxy-taxol (2),
N-debenzoyl-taxol (3), 10-deacetyl-N-debenzoyl-2’-deoxy-taxol (6),
10-deacetyl-N-debenzoyl-taxol (7) and 2’-deoxy-taxol (9) (Fig. 1 and
Supplementary Figs.1-15).

To reconstruct the pathway in tobacco, each gene, driven by the
M24 transcript promoter of the Mirabilis mosaic virus, shown to sup-
port high-level gene expression® wasintroduced into tobacco through
Agrobacterium tumefaciens-mediated (AGL1) infiltration (agro-
infiltration). First, we studied the function of Taxus baccata phe-
nylalanine aminomutase (PAM), which was reported to convert
a-phenylalanine to B-phenylalanine. We tested PAM in tobacco and
confirmed -phenylalanine production by ultra-high-performance
liquid chromatography-quadrupole time of flight-mass spectrom-
etry (UPLC-qTOF-MS) analysis (Supplementary Fig. 16), verifying the
reported function of PAM.

The next step in the pathway is the synthesis of B-phenylalanoyl-
CoA, forwhichtwo candidates have beenreported: 3-phenylalanine-and
4-coumarate-CoA ligase (TBPCCL) from T. baccata® and acyl-activating
enzyme16 (AAE16) from Taxus chinensis®. Since B-phenylalanoyl-CoA
is unstable and can decompose during extraction, we combined its
synthesis with the subsequent step of the pathway: the condensation of
B-phenylalanoyl-CoA withbaccatinlllinto N-debenzoyl-2’-deoxy-taxol
(2; Fig. 1). This reaction is catalysed by the enzyme baccatin 111 13-O-
(3-amino-3-phenylpropanoyl) transferase (BAPT)*. When TBPCCL or
AAE16 were co-expressed with Taxus cuspidata BAPT intobacco, a peak
with the same retention time and mass spectrumas chemically synthe-
sized N-debenzoyl-2’-deoxy-taxol (2) was observed (Supplementary
Fig.17). However, the levels of N-debenzoyl-2’-deoxy-taxol (2) obtained
were low, hindering further reconstruction of the pathway. Therefore,
we examined a variant of a CoA ligase from Penicillium chrysogenum,
CoAL(A312G), whichis reported to catalyse the same reaction®”, The
combination of CoOAL(A312G) with BAPT and PAM enabled robust
synthesis of N-debenzoyl-2’-deoxy-taxol (2), converting over 60% of
exogenous baccatin Il (Fig. 2a; Supplementary Fig. 17).
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Elucidating the C2’a hydroxylation step

From N-debenzoyl-2’-deoxy-taxol (2), the next step is postulated to be
the hydroxylation of C2’ of the B-phenylalanyl side chain, leading to
the formation of N-debenzoyl-taxol (3; Fig. 1). ACYP enzyme, TB506,
has been proposed to catalyse this step using a Pisum sativum proto-
plastsystem®. However, no direct production of N-debenzoyl-taxol (3)
from TB506 has been demonstrated. To validate the proposed func-
tion of TB506, we tested its ability to directly convert N-debenzoyl-
2’-deoxy-taxol (2) into N-debenzoyl-taxol (3) in tobacco cells
expressing PAM, CoAL(A312G) and BAPT. Although Western blot analy-
sis confirmed the production of TB506 protein in the agro-infiltrated
leaves (Supplementary Fig. 18), we were unable to obtainaproduct that
matched the retention time and mass spectrum of chemically synthe-
sized N-debenzoyl-taxol (3; Fig. 2b). When exogenous N-debenzoyl-
2’-deoxy-taxol (2) was directly supplied to TB506-expressing tobacco
leaves, we were again unable to detect a peak corresponding to the
expected product. Therefore, we concluded that TB506 is probably
not the correct enzyme for this step.

This prompted usto searchfor new CYP candidates for the enzyme
catalysing C2’a hydroxylation. We utilized available genomic and
transcriptomic data of Taxus wallichiana®, Taxus chinensis var.
mairei** and Taxus yunnanensis® to perform a gene co-expression
analysis across different cell types (leaf, root, stem and strobilus)
and under diverse conditions (for example, methyl-jasmonate treat-
ment). Known Taxol biosynthetic genes were used as baits (Supple-
mentary Table 2). The analysis revealed that the known genes form
two separate co-expression groups. One group includes taxadiene
synthase®'’, taxoid-5a-hydroxylase'®, taxoid-10B-hydroxylase", taxoid
acetyltransferase 19", benzoyl-CoA:taxane 2a-O-benzoyltransferase”,
10-deacetylbaccatin I1I-10-O-acetyltransferase (DBAT)'® and BAPT*.
The second group consists of PAM?*, taxoid-2-hydroxylase", taxoid-
13a-hydroxylase'?and taxoid-7B-hydroxylase® (Supplementary Fig. 19).
To identify new candidates for C2’a hydroxylation, we selected CYPs
whose expression pattern correlated with atleast one of the two groups
(Supplementary Fig. 20). This led to the selection of 19 CYPs from T.
chinensis for further characterization. Additionally, we included 16
CYPsfrom T. chinensis previously reported as differentially expressedin
Taxol-producing cultured cells but not functionally characterized (Sup-
plementary Table 3)*. We also examined all CYPs previously reported to
actonthetaxadiene skeleton to explore the possibility of promiscuous
activity. However, none of the selected candidates was able to produce
N-debenzoyl-taxol (3; Supplementary Figs. 21 and 22).

Having screened over 40 different CYP candidates without suc-
cess, we began to suspect that this reaction may not be catalysed by a
CYP. Therefore, we turned our attention to another large oxidase fam-
ily, the 2-oxoglutarate-dependent oxygenases (OGDs). OGDs employ
2-oxoglutarate and O, as co-substrates and are known to catalyse awide
range of oxidative transformations on small molecules and proteins***.,
Notably, members of this enzyme family have been shown to hydroxylate
aspartyl or asparaginyl residues*, a reaction that closely resembles the
oxidationat the 2’a position of N-debenzoyl-2’-deoxy-taxol (Supplemen-
tary Fig. 23). This functional similarity highlighted OGDs as strong candi-
datesforfurtherinvestigation. Were-analysed the co-expression matrix
and found nine T. chinensis OGD genes that showed strong expression
correlationwith atleast one of the two aforementioned expressiongroups
(Supplementary Fig. 24). These nine candidates were further studied in
tobacco plants producing N-debenzoyl-2’-deoxy-taxol (2) through the
co-expression of PAM, CoAL(A312G) and BAPT. One of these candidates
produced anew peak confirmed to be N-debenzoyl-taxol (3) by compari-
son of its retention time and mass spectrum with an authentic standard
(Fig.2band Supplementary Figs.25and 26). The identified OGD demon-
strated high efficiency, converting nearly all of the available N-debenzoyl-
2’-deoxy-taxol (2) to N-debenzoyl-taxol (3; Fig. 2b). The observed activity
was further validated by feeding chemically synthesized N-debenzoyl-
2’-deoxy-taxol (2) to tobacco leaves expressing only the new enzyme

(Fig. 2b). We named this enzyme taxoid-2’-oxoglutarate-dependent
dioxygenase (T2’0GD; GenBank accession no. PQ015324).

Benzoylation of the C13 side chain
The final step of the pathway involves the benzoylation of
N-debenzoyl-taxol (3). The enzyme DBTNBT has been proposed to
catalyse this step®. To validate the activity of DBTNBT, we transiently
expresseditintobacco plants that produced N-debenzoyl-taxol (3), the
proposed substrate of DBTNBT, and we detected low amounts of Taxol
(Fig. 3a). However, similar Taxol levels were also detected in samples
where DBTNBT was absent (Fig. 3a), suggesting that the Taxol observed
was probably produced by tobacco enzymes. To ensure that the inabil-
ity to detect DBTNBT-mediated Taxol production was not due to the
enzyme being non-functional in our system, we assessed its reported
ability tobenzoylate N-debenzoyl-2’-deoxy-taxol (2) to 2’-deoxy-taxol
(9)***' by co-expressing it with PAM, CoAL(A312G) and BAPT. Indeed,
DBTNBT successfully converted N-debenzoyl-2’-deoxy-taxol (2) to
2’-deoxy-taxol (9; Supplementary Fig. 27), confirming that, although
itis functionally produced in tobacco, it cannot efficiently catalyse
Taxol synthesis. Therefore, we concluded that previous reports of Taxol
productionintobacco mediated by DBTNBT* were probably influenced
by thelow levels of Taxol produced by endogenous tobacco enzymes.
Therefore, we embarked on identifying the correct 3’-N-
benzoyltransferase using gene co-expression analysis as a guide
for candidate selection. In total, 25 BAHD family (BAHD stands for
the first four characterized enzymes in this family: benzylalcohol
O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase,
anthranilate N-hydroxycinnamoyl/benzoyltransferase and deacetyl-
vindoline 4-O-acetyltransferase) candidates from T. chinensis were
chosen (Supplementary Fig. 28) and individually tested in tobacco
plants producing N-debenzoyl-taxol (3) through co-expression of
PAM, CoAL(A312G), BAPT and T2’OGD. One candidate was found to
consume N-debenzoyl-taxol (3) and produce Taxol, confirmed by
comparison with an authentic Taxol standard (Fig. 3a and Supple-
mentary Figs. 29 and 30). This newly identified enzyme, named here
as taxoid-3’-N-benzoyltransferase (T3’NBT, GenBank accession no.
PQO015327), exhibited high efficiency, converting 75% of the available
N-debenzoyl-taxol (3) to Taxol. Compared with the background level of
Taxol produced by tobaccointhe absence or presence of DBTNBT, Taxol
derived from T3’NBT was 280 times higher (Fig. 3b), clearly suggesting
that T3’NBT is the preferred enzyme for the 3’-N-benzoylation of tax-
oids. Under these conditions, Taxol productionreached1.99 + 0.19 ug
per gram of leaf wet weight.

Sequence of biosynthetic events

Having identified T2’0OGD and T3’NBT as the enzymes catalysing the
last two steps of the Taxol pathway, we investigated the sequence of
these two biosynthetic events. First, we assessed the ability of T2’0GD
to hydroxylate 2’-deoxy-taxol (9) by supplying T2’OGD-expressing
tobacco cells with chemically synthesized 2’-deoxy-taxol (9). We found
that 2’-deoxy-taxol (9) is not a substrate for T2’0GD (Supplementary
Fig. 31), establishing that C2’a hydroxylation by T2’OGD precedes
benzoylation by T3’NBT (Fig. 1). Subsequently, we expressed T3’NBT
intobacco leaves synthesizing N-debenzoyl-2’-deoxy-taxol (2). T3’NBT
was unable to convert N-debenzoyl-2’-deoxy-taxol (2) to 2’-deoxy-taxol
(9), confirming the essential role of T2’0GD-mediated C2’a hydroxy-
lation for benzoylation by T3’NBT (Supplementary Fig. 32). These
findings were further supported by analysing the metabolites pre-
sentin T. baccata bark extracts, where it was evident that, although
N-debenzoyl-2’-deoxy-taxol (2) and N-debenzoyl-taxol (3) were present,
2’-deoxy-taxol (9) could not be detected (Supplementary Fig. 33).

Metabolic grid leading to Taxol
Baccatin Il is synthesized from 10-deacetyl-baccatin Ill through the
action of the enzyme DBAT"® (Fig. 1). It has been reported that DBAT
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Fig. 3| T3'NBT catalyses the biosynthesis of Taxol from N-debenzoyl-taxol (3).
a, EICs (positive) of extracts of tobacco leaves transiently expressing PAM,
BAPT, CoAL(A312G), T2’0OGD and DBTNBT (the previously proposed enzyme

for the 3’N-benzoylation reaction) or T3’NBT (the newly identified enzyme for
the 3'N-benzoylation reaction). Inset: 500x magnifications of the EICs show

low levels of Taxol (4, C,;H;,NO,,*, m/z = 854.3382 + 0.01) can be produced by
the conversion of N-debenzoyl-taxol (3, C,oH,sNO,;*, m/z=750.3120 + 0.01) by
endogenous tobacco enzymes. When DBTNBT is present, Taxol levels do not
increase above the background. Taxol is produced from N-debenzoyl-taxol (3)
above background levels only when PAM, BAPT, CoAL(A312G), T2’0OGD and

T3’NBT are present. Transiently produced enzymes are shown in solid green
squares. Baccatin lllwas supplied at 200 mg 1™ at 2 days after agro-infiltration.
b, Taxol levels in tobacco expressing PAM, BAPT, CoAL(A312G) and T2’0OGD in
the absence of a benzoyltransferase (No BTase), in the presence of DBTNBT and
inthe presence of T3'NBT. Data are shown as mean + s.d. fromn =3 independent
biological replicates. The one-way analysis of variance (ANOVA) Pvalue
(P=0.000095) indicates a statistically significant difference between T3’NBT
and the other two samples. There is no statistically significant difference (NS)
between the DBTNBT sample and the sample without abenzoyltransferase.
Individual data points are indicated by open circles.

alsoacetylates the C10 hydroxyl group of 10-deacetyl-taxol (8) to form
Taxol*®. This raises the question of whether baccatin Ill is the exclu-
sive entry point into the final steps of Taxol biosynthesis or if these
steps function as a metabolic grid, allowing 10-deacetyl-baccatin
Il to serve as an alternative entry point. To explore this, we investi-
gated whether BAPT, T2’0OGD or T3’NBT could use taxoids with the
10-deacetyl-baccatinIll core as substrates.

Feeding 10-deacetyl-baccatin Ill to tobacco leaves expressing
PAM, CoAL(A312G) and BAPT, we confirmed that BAPT adds the
phenylalanyl side chain to C13 of 10-deacetyl-baccatin Ill, forming
10-deacetyl-N-debenzoyl-2’-deoxy-taxol (6; Fig. 4a and Supplementary
Fig. 34). Furthermore, T2’0OGD oxidizes 10-deacetyl-N-debenzoyl-
2’-deoxy-taxol (6) to form 10-deacetyl-N-debenzoyl-taxol (7), and
T3’NBT benzoylates 10-deacetyl-N-debenzoyl-taxol (7) to form
10-deacetyl-taxol (8; Fig. 4a and Supplementary Fig. 34). Notably,
T3’NBT does not benzoylate 10-deacetyl-N-debenzoyl-2’-deoxy-taxol
(6; Supplementary Fig. 35), confirming its strict requirement for the
presence of the C2’achydroxyl group.

These findings suggest that the final steps of Taxol biosynthesis
probably operate as a metabolic grid. To further investigate,
we examined whether DBAT acetylates intermediates between
10-deacetyl-baccatinIlland 10-deacetyl-taxol, namely 10-deacetyl-N-
debenzoyl-2’-deoxy-taxol (6) and 10-deacetyl-N-debenzoyl-taxol (7).
Tobacco feeding experiments revealed that DBAT indeed acetylates
these intermediates, producing N-debenzoyl-2’-deoxy-taxol
(2) and N-debenzoyl-taxol (3), respectively (Fig. 4b). Furthermore,
analysis of T. baccata bark extracts confirmed the presence of
10-deacetyl-N-debenzoyl-2’-deoxy-taxol (6),10-deacetyl-N-debenzoyl-
taxol (7), N-debenzoyl-2’-deoxy-taxol (2), N-debenzoyl-taxol (3) and
10-deacetyl-taxol (8), supporting the grid structure of the pathway
(Supplementary Fig. 33).

Biotechnological production of Taxolin yeast

Tofurther confirm the function of theidentified enzymes and to estab-
lish the basis for the biotechnological production of Taxol, we recon-
structed the pathway from baccatin Il to Taxolin astepwise mannerin
baker’s yeast (Saccharomyces cerevisiae). As in tobacco, we started by
establishing efficient production of N-debenzoyl-2’-deoxy-taxol (2). To
this end, we introduced BAPT and CoAL(A312G) on episomal vectors
in the base yeast strain EGY48***, resulting in yeast strain LTO1 (Sup-
plementary Table 4). When strain LTO1 was supplied with exogenous
baccatinllland B-phenylalanine, we were unable to detect N-debenzoyl-
2’-deoxy-taxol (2) by UPLC-qTOF-MS analysis of yeast culture extracts.
Asbaccatinlllimportoractive export could be alimiting factorin this
step, we examined the levels of baccatinlllinside the yeast cellsandin
the medium. We observed similar intracellular and extracellular levels
ofbaccatin I, suggesting that another obstacle, such as poor expres-
sion or activity of BAPT or CoAL(A312G), could be responsible. Thus,
we proceeded to evaluate the protein levels of these two enzymes by
Westernblotting and found that the levels of BAPT were considerably
lower than those of CoAL(A312G) (Supplementary Fig. 36). Suspect-
ing that the low BAPT levels could be due to poor stability or solubil-
ity, we lowered the yeast cultivation temperature from 30 to 20 °C.
This improved BAPT protein levels (Supplementary Fig. 37) enabled
detectable conversion of baccatin Il to N-debenzoyl-2’-deoxy-taxol
(2; Supplementary Fig. 38). As observedin tobacco, the two previously
proposed CoA-ligases, TBPCCL and AAE16, were markedly less efficient
than CoAL(A312G) in supporting N-debenzoyl-2’-deoxy-taxol synthesis
inyeast (Supplementary Fig. 38).

Despite this improvement, only ~0.001% of baccatin Il was con-
verted to N-debenzoyl-2’a-deoxy-taxol under these conditions. Thus,
we focused on improving the N-debenzoyl-2’-deoxy-taxol (2) pro-
duction by enhancing the performance of BAPT. First, we utilized
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Fig.4|10-Deacetyl-baccatin Ill serves as an alternative entry pointinto the
late Taxol biosynthetic pathway. a, Biosynthesis of 10-deacetyl-N-debenzoyl-
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(8) from exogenously supplied 10-deacetyl-baccatin Il (10-DAB, 5) in

tobacco leaves transiently expressing PAM, BAPT, CoAL(A312G), T2’0GD

and T3'NBT. EICs (positive) of 10-DAB (5, C,H;,0,,", m/z = 545.2381 + 0.01),
10-deacetyl-N-debenzoyl-2’-deoxy-taxol (6, C;sH,sNOy,*, m/z = 692.3065 + 0.01),
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10-deacetyl-taxol (8, C,sHsoNO,;", m/z=812.3277 + 0.01). b, DBAT is a promiscuous
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10-deacetyl-N-debenzoyl-taxol (7) as substrates and produces N-debenzoyl-
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2’-deoxy-taxol (2) and N-debenzoyl-taxol (3), respectively. EICs (positive) of
10-deacetyl-N-debenzoyl-2’-deoxy-taxol (6), 10-deacetyl-N-debenzoyl-taxol

(7), N-debenzoyl-2’-deoxy-taxol (2, C,,H,;sNO,,", m/z=734.3171 + 0.01) and
N-debenzoyl-taxol (3, C,oH,sNOy;*, m/z=750.3120 + 0.01) are shown. Transiently
produced enzymes are shown insolid green squares. Solid blue squares
indicate the exogenous supply of the corresponding substrate (200 mg 1™
10-DAB (5), 50 mg 1"'10-deacetyl-N-debenzoyl-2’-deoxy-taxol (6) or 50 mg 1™
10-deacetyl-N-debenzoyl-taxol (7)) 2 days after the agro-infiltration event.
Inverted triangles indicate an uncharacterized byproduct of the chemical
synthesis of compound 6 that has the same exact mass as 6 (Supplementary

Fig.34d).

computational tools to assess the BAPT solubility and guide the design
of improved variants. We searched for BAPT homologs from other
Taxus species (Supplementary Table 5) and aligned their amino acid
sequences (Supplementary Fig. 39) to identify conserved or nearly
conserved residues probably critical for enzyme folding and activ-
ity. Thirty-six residues were identified as probably non-essential and
suitable for mutagenesis to enhance solubility. Next, we employed
the Protein-Sol predictive algorithm*® to evaluate the impact of sub-
stituting each of these residues on the solubility of T. cuspidata BAPT.
This analysis identified nine positions predicted to positively affect
solubility, which were combined into a new variant, BAPTm (Supple-
mentary Fig. 39). BAPTm exhibited higher predicted solubility than
anyindividual BAPT enzyme identified in our search (Supplementary
Table 5). Introducing BAPTm into yeast increased the N-debenzoyl-
2’-deoxy-taxol (2) production by 27% compared with wild-type
BAPT (Fig. 5a).

Fusing proteins with maltose binding protein (MBP) is a general
strategy to increase protein stability and solubility**®, Therefore, to
further improve the performance of BAPTm, we constructed fusions
with MBP at either the N- or C-terminus of BAPTm using a four-amino

acid linker (IGGG). While appending MBP to the C-terminus reduced
the N-debenzoyl-2’-deoxy-taxol (2) production compared with unfused
BAPTm, fusing MBP at the N-terminus (MBPig3BAPTm) improved the
performance (Supplementary Fig.37). Consequently, yeast strain LTO3,
carrying MBPig3BAPTm and CoAL(A312G), exhibited a 77% increase in
N-debenzoyl-2’-deoxy-taxol (2) production compared with LTO1 (Fig. 5a).

We proceeded to incorporate the next enzyme, T2’0OGD, into the
yeast cells expressing CoAL(A312G) and MBPig3BAPTm, resulting in
strain LTO4 (Supplementary Table 4). T2’OGD was efficient in pro-
ducing N-debenzoyl-taxolinyeast, consuming 71 + 1% of the available
N-debenzoyl-2’-deoxy-taxol (2, Fig. 5b), further confirming its role in
Taxol biosynthesis.

To complete the pathway, we introduced CoAL(A312G),
MBPig3BAPTm, T2’0OGD and T3’NBT into EGY48, resulting in strain
LTOS (Supplementary Table 4). Upon feeding baccatin Il and f3-
phenylalanine, Taxol production was clearly observed (Fig. 5b and
Supplementary Figs. 40 and 41). Under these conditions, N-debenzoyl-
taxol (3) was efficiently consumed by T3’NBT, further confirming
its function as a taxoid-3’-N-benzoyltransferase. The Taxol titer was

0.59+0.03 pgl™
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Fig. 5| Reconstruction of the late Taxol biosynthetic pathway in S. cerevisiae.
a, BAPT optimization to increase the production of N-debenzoyl-2’-deoxy-taxol
(2;C4oHNOy," m/z=734.3171+ 0.01) in S. cerevisiae. All three strains express
CoAL(A312G) from episomal vectors. Additionally, LTO1 expresses BAPT, LTO2
expresses BAPTm and LTO3 expresses BAPTm fused with maltose binding protein
(MBPig3BAPTm). Data are shown as mean + s.d. from n = 3 biological replicates.
One-way ANOVA Pvalues indicate significant statistical differences. Production
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of N-debenzoyl-2’-deoxy-taxol (2) in LTOlis set as 1. b, Biosynthesis of Taxol (4)
inyeast. EICs (positive) showing the levels of N-debenzoyl-2’-deoxy-taxol (2),
N-debenzoyl-taxol (3, C,oH,sNOy;*, m/z =750.3120 + 0.01) and Taxol

(4, C,;H;,NO,,*, m/z=854.3382 + 0.01) in ethyl acetate extracts of yeast cultures
supplemented with100 mg I baccatin Il (1) and 100 mg I B-phenylalanine.
Solid orange squares indicate the produced proteins.

Engineering abenzoyl-CoA-supplying module

Benzoylation by T3’NBT requires benzoyl-CoA as a co-substrate.
However, benzoyl-CoA levels in yeast may be insufficient for efficient
Taxol production. To enhance Taxol synthesis, we set out tointroduce a
benzoyl-CoA biosynthetic module to boost the yeast benzoyl-CoA pool.
In Petunia hybrida, abeta-oxidation pathway is responsible for produc-
ing benzoyl-CoA for the biosynthesis of benzenoids. This pathway
involves four core steps that convert cinnamic acid to benzoyl-CoA. In
thefirststep, cinnamicacid ligase (CNL) attaches CoAto cinnamic acid
toformcinnamoyl-CoA*. Next, the bifunctional enzyme cinnamoyl-CoA
hydratase-dehydrogenase (CDH) catalyses two reactions: conversion
of cinnamoyl-CoA to 3-hydroxy-3-phenylpropanoyl-CoA (3H3PP-CoA)
and then reduction of 3H3PP-CoA to 3-oxo-3-phenylpropanoyl-CoA
(303PP-CoA)*. Finally, 303PP-CoA is cleaved by 3-ketoacyl-CoA
thiolase 1 (KAT1) to produce benzoyl-CoA®" (Fig. 6, Supplemen-
tary Table 1). This pathway normally operates in the peroxisome of
P. hybrida cells. Thus, to establish a benzoyl-CoA-producing module
in the yeast cytosol, we removed the peroxisomal targeting signals
from CNL, CDH and KAT1 and introduced these genes into strain
LTOS5 viachromosomalintegration. Furthermore, to provide the core
steps with cinnamic acid, we introduced the enzyme phenylalanine
ammonia-lyase 2 (PAL) from Arabidopsis thaliana, which converts the
amino acid phenylalanine to cinnamic acid®* (resulting in strain LTO6;
Supplementary Table 4).

Introducing the benzoyl-CoA module had a positive impact on
Taxol production. The improved availability of benzoyl-CoA supported
astrong pull by T3’NBT in the last step of the reconstructed pathway,
resulting in the almost complete conversion of the intermediates
N-debenzoyl-2’-deoxy-taxol (2) and N-debenzoyl-taxol (3; Fig. 5b). As
aresult, al.6-fold increase in the Taxol titer was obtained, reaching
0.97+0.05pgl™

Conclusions

Inthis Article, we employed a systematic approach thatincluded the
functional validation of key enzymes and the identification of miss-
ing activities to complete the elusive final steps of Taxol biosynthe-
sis. Using a step-by-step approach, we discovered that the final two
modifications (C2’a hydroxylation and 3’-N benzoylation), which

are critical for Taxol’s anti-mitotic activity®, had been incorrectly
assigned. To accurately identify the correct enzymes, we conducted
aco-expression analysis across three different Taxus species, leading
to the identification of T2’0OGD and T3’NBT as the correct enzymes
for these steps. We validated the functions of T2’0OGD and T3’NBT in
bothtobacco and yeast systems, where they showed high activity and
efficiency in converting their substrates. These findings complete the
understanding of abiosynthetic pathway that has mystified biochem-
ists for decades.

Building on thisknowledge, we leveraged the benefits of microbial
systemsto develop asustainable and scalable method for Taxol produc-
tion, establishing a yeast cell factory for the bioconversion of baccatin
11l to Taxol. Currently, Taxol is primarily produced through chemical
semi-synthesis from other taxoids, suchas baccatin IlII**. These taxoids
can be sustainably sourced from the needles of cultivated Taxus spe-
cies without causing irreversible damage to the plant, making them
relatively scalable and cost-efficient starting materials. However, the
chemical semi-synthesis of Taxol is limited in efficiency and depends
on highly pure starting materials as well as environmentally harmful
catalysts and solvents®**, The sustainable biotechnological method
developed here offers substantial advantages over semi-synthesis. It
reduces the environmental impact of Taxol production by eliminating
the reliance on petrochemicals and the use of catalysts and solvents.
Furthermore, while chemical synthesis demandsrelatively pure start-
ing materials, biotechnological production can utilize crude Taxus
needle extracts, further lowering costs. Importantly, this method is
non-destructive to the starting materials, allowing unused taxoids to
be recycled through subsequent bioconversion rounds.

At this stage, the efficiency of baccatin lll bioconversion to Taxol
inS. cerevisiae remains low. Analysing the levels of pathway intermedi-
atesrevealed that the steps downstream of C13 side-chain additionare
not limiting, as introducing the benzoyl-CoA module in strain LTO6
resulted in near-complete consumption of intermediates. Instead, a
main bottleneck was identified in the early steps of the pathway lead-
ingto N-debenzoyl-2’-deoxy-taxol, making these steps critical targets
for further optimization.

Among the early pathway enzymes, BAPT was identified as a
major obstacle. While BAPT achieves 60% conversion of baccatin I1l
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Fig. 6 | Biotechnological production of Taxol from baccatinIll in yeast.

The final steps of Taxol biosynthesis were introduced in the base strain EGY48,
and afive-step ‘benzoyl-CoA production module’ was incorporated to facilitate
Taxol production. This module consisted of the enzymes A. thaliana PAL,

S. cerevisiae

P. hybrida CNL, P. hybrida CHD and P. hybrida KAT1. MBPig3BAPTm indicates a
fusion protein with a MBP fused at the N-terminus of the mutant form of BAPT.
Substrates B-phenylalanine and baccatin Ill were supplied at 100 mg 1 each.

in tobacco, its performance in yeast is suboptimal. Enhancing BAPT
stability and activity in yeast could involve exploring homologous
enzymes from other Taxus species, employing alternative yeast or
bacterial hosts that offer amore suitable environment for BAPT activity
orapplyingstructure-guided protein engineering. Another contributor
toinefficiency may be the availability of -phenylalanoyl-CoA. Owing
to the poor efficiency of the two previously proposed CoA-ligases
(TBPCCL and AAE16) intobacco and yeast, we employed CoAL(A312G)
asasurrogate enzyme. Although efficientintobacco, CoAL(A312G) may
lack the performance required for robust synthesis of N-debenzoyl-
2’-deoxy-taxol in yeast. Thus, identifying an efficient enzyme from
Taxus may be required for optimal pathway reconstruction in yeast.
At the late stages of this revision, a pre-print reported a new candi-
date CoA-ligase”. It would be valuable to test this new candidate in
yeast and evaluate whether it can improve the critical C13 side-chain
synthesis step.

Inthelater steps of the pathway, the reactions catalysed by T2’0GD
and T3’NBT did not present bottlenecks at this stage. However, using
yeast codon-optimized versions of these genes could further enhance
the overall pathway efficiency. Additionally, benzoyl-CoA produc-
tion was localized to the cytosol to couple N-debenzoyl-taxol synthe-
sis with subsequent benzoylation. This approach avoids reliance on

peroxisomal export of benzoyl-CoA and has proven effective, providing
sufficient benzoyl-CoA levels to support near-complete conversion
of N-debenzoyl-taxol. However, as early pathway steps are improved,
new limitations in benzoyl-CoA supply could emerge. In this case,
alternative strategies, such as enzyme engineering, bacterial-derived
benzoyl-CoA pathways or re-localizing key steps to the peroxisome,
could be explored.

Overall, our results demonstrate the feasibility of producing Taxol
by bioconversion of pathway intermediates. With further optimization
ofthelimiting steps and the conditions of the bioconversion process,
this biotechnological platform holds strong potential for achieving
industrial-scale Taxol production.

Methods

Functional re-annotation of the T. chinensis var. mairei
genome

The putative encoded proteins were retrieved from the genome of
T.chinensisvar. mairei”. Two paralleled functional re-annotations were
implemented by reverse position-specific BLAST (RPS-BLAST) against
the Conserved Domain Database (CDD; https://www.ncbi.nlm.nih.gov/
cdd/) with e-value e ™*and HMMsearch® against Pfam®’ database with
e-value e, respectively.
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RNA-seq data analysis and co-expression network
construction

Three sets of transcriptomes were retrieved from three independent
previous studies, Taxus chinensisvar. mairei®, Taxusyunnanensis*® and
Taxus wallichiana®, respectively, ending with 59 data sets in total. The
chromosome-level genome of Taxus chinensis var. maireiwas used as the
reference genome. RNA-sequencing reads were mapped tothereference
genome using HISAT v2.2.1%, and the fragments per kilobase of transcript
permillion mapped reads value was calculated by using StringTie v2.2.1%.
Eleven characterized taxol biosynthetic genes (Supplementary Table 2)
were used as baits, and 26,407 genes with Spearman correlation coeffi-
cient>0.6 wereidentified and extracted. The co-expression network of
the 26,407 genes was later created using Cytoscape 3.10.0°°.

Transient gene expression in N. benthamiana

Vector pLIFE33n*, which contains a USER® cloning site, was used
for transient gene expression in tobacco. Expression vectors were
constructed by inserting the M24°¢ promoter and gene of interest
into pLIFE33n through USER cloning, utilizing the enzymes AsiSI
and Nb.Bsml. The candidate genes were synthesized by Twist Bio-
science according to the cDNA sequence of T. chinensis var. mairei
(Genebank GCA_019776745.2). USER cloning primers were synthe-
sized from TAG Copenhagen A/S, Denmark, and their sequences are
listed in Supplementary Data 1. Expression vectors were individu-
ally electro-transformed into A. tumefaciens strain AGL-1-GV3850.
Agro-infiltration was carried out by following the previously published
protocol, using different combinations of agrobacterium strains car-
rying the target gene of interest®*.

Tobacco plants were cultivated in a greenhouse with a16/8 h
light/dark cycle for 4-6 weeks until they had five or six leaves. Two
young leaves, the fourth one and the fifth one, of each plant were
agro-infiltrated. When exogenous substrates were added, substrates
were fed 48 h after agro-infiltration. Substrates were dissolved in 5%
methanol/H,0 at 200 mg I each. Tobacco was grown for another
5 days before metabolite extraction from the agro-infiltrated leaves.

Gene expression and bioconversionin . cerevisiae

EGY48'** yeast strain was used as the parental strain. Yeast codon-
optimized synthetic genes for CoAL(A312G), BAPT, PAL, CNL, CHD
and KAT1 were obtained from Thermo Fisher. The genes encoding
the four enzymes of the benzoyl-CoA module, PAL, CNL, CHD and
KATI1, were integrated into the XI-2 locus® of the yeast genome. Yeast
transformation was carried out using a lithium acetate protocol®*. All
the other genes were expressed from episomal vectors. For taxane
production, seed cultures were inoculated into yeast synthetic media
with the relevant autotrophic selections and cultivated overnight at
30 °C. The next day, overnight cultures were washed and re-suspended
in galactose synthetic media (20 g 1™ galactose and 10 g I* raffinose)
at an optical density of 600 nm (ODy,) of 0.5 and grown overnight at
20 °C.Onthethird day, the cultures were spun down and re-suspended
in galactose-containing synthetic media, buffered with 200 mM
2-(N-morpholino)ethane sulfonic acid (pH 7) containing 100 mg I
B-phenylalanine and 100 mg ™ baccatinll, and cultivated for another
3 days at 20 °C before metabolite extraction. The OD, of each engi-
neered strain was monitored every day.

Metabolite extraction

Methanolwas used to extract metabolites fromtobacco leaves. Before
methanol extraction, leaves were quickly frozen inliquid nitrogen and
ground. Specifically, a leaf disc with diameter of 2 cm was extracted
with 450 pl methanol. The extraction mixture was sonicated for
30 mininawater bath and spun down, and the supernatant wasfiltered
througha0.22-pmpolyvinylidene difluoride filter before UPLC-qTOF-
MS analysis. The same extraction method was used for preparing the
T. baccatabark samples.

Ethyl acetate was used to extract metabolites fromyeast cultures.
Yeast pellets were collected by centrifugation and re-suspended in
1 mlMilliQ H,O before the addition of 1 ml ethyl acetate. An aliquot of
200 mg 0.5 mm acid-washed glass beads (Mini-BeadBeater Glass Mill
Beads, Cole-Parmer) was added to each sample to facilitate cell dis-
ruption through vortexing. The upper layer was collected for vacuum
evaporation. After evaporation, the residues were re-suspended in
methanol. Methanol-dissolved extracts werefiltered through a 0.22-um
polyvinylidene difluoride filter before UPLC-qTOF-MS analysis.

UPLC-qTOF-MS analysis

Ultra-high-performance liquid chromatography with quadrupole
time-of-flight high-resolution mass spectrometry analysis was car-
ried outinaDionex Ultimate 3000 quaternary rapid separation UPLC
focused system (Thermo Fisher Scientific) connected to a Bruker
Daltonics compact qTOF mass spectrometer equipped with an
electrospray ionization interface (Bruker Daltonics). Electrospray
ionization-MS settings were as follows: capillary voltage of 4,000V,
end-plate offset of -500 V, nebulizer pressure of 2.0 bar, drying gas flow
of 8 Imin™and drying temperature of 220 °C. A Phenomenex Kinetex
1.7 pXB-C18 LC column (150 x 2.1 mm) was used for separation. Solvents
A (H,0 acidified with 0.05% formic acid) and B (acetonitrile acidified
with 0.05% formic acid) were used as mobile phases. The taxoids were
detected in positive mode using the following separation programme:
0 min, 10% B; 27 min, 100% B; 32 min, 100% B; 33 min, 10% B; 38 min,
10% B. For a/f3-phenylalanine and B-phenylalanine-CoA detection,
MS data were acquired in negative mode. In this case, the separations
were performed using the following gradient profile: 0 min, 2% B;
15 min, 100% B; 18 min, 100% B; 19 min, 2 % B; 26 min, 10% B. min, 10%
B. A sodium formate solution was injected at the beginning of each
chromatographic run as an internal standard. HyStar 3.2 software
(Bruker Daltonics) was used for ultra-high-performance liquid chro-
matography-high-resolution mass spectrometry data acquisition,
and Bruker Compass DataAnalysis 4.20 software was used for mass
spectra and quantification.

Data analysis and illustrations

ChemDraw Professional 15.1 (PerkinElmer) was used to draw chemical
structures. Microsoft Excel 2016 was used for bar charts, and Microsoft
PowerPoint 2016 was used for the preparation of illustrations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All datanecessary tointerpret, verify and extend the research presented
inthe article are provided within the paper and in the Supplementary
Information and Source data. The nucleotide sequences of T2’0GD and
T3’NBT have been deposited in the National Center for Biotechnology
Information GenBank under accessions PQ015324 and PQ015327, respec-
tively. Databases and software used in genome functional re-annotation
are available via the Conserved Domain Databse at https://www.ncbi.
nlm.nih.gov/cdd/, HMMsearchat http://hmmer.org/and the Pfam data-
base at http://pfam.xfam.org/. Software used in RNA-seq data analy-
sis and co-expression network construction are available at https://
daehwankimlab.github.io/hisat2/ (HISAT v2.2.1), https://ccb.jhu.
edu/software/stringtie/ (StringTie v2.2.1) and https://cytoscape.org/
(Cytoscape 3.10.0). Source data are provided with this paper.
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