	Supplementary Information	
	Thermally self-sufficient process for cleaner production	
	of e-methanol by CO ₂ hydrogenation	
	Luis Vaquerizo, ^{1,2} Anton A. Kiss ^{2*}	
	¹ Institute of Bioeconomy, PressTech Group, Department of Chemical Engineering and Environmental Technology, University of Valladolid, Doctor Mergelina s/n, 47011, Valladolid, Sanin	
	 ² Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands 	
	* Corresponding author: TonyKiss@gmail.com, A.A.Kiss@tudelft.nl	
	This Supplementary Information file provides more details about the cash flow analysis, the	
	equipment sizing and the main design parameters, the dividing wall column simulation model,	
	as well as the greenhouse gas (GHG) emissions calculation.	
	1) Cash flow analysis:	
The following equations have been used to obtain the cash flow analysis:		
	Year 0:	
	- Cash flow = Investment.	
	\circ Investment = TIC + Circulating Capital + R&D Investment.	
	Rest of the years:	
	- Cash flow = Profit After Taxes + Depreciation.	
	• Profit After Taxes = Profit Before Taxes - Taxes.	
	 Profit Before Taxes = Profit – Depreciation 	
	• Profit = Revenue - OPEX.	
	• Revenue = Methanol Production x Methanol Selling Price.	
	Table S1 shows the parameters considered for the economic evaluation:	
	Table S1 Economic analysis Main factors	

Parameter	Value	Units
Circulating Capital	5	% TIC
R&D Investment	3	% TIC
Depreciation time	10	years
Taxes	25	% Yearly benefit

1 2) Equipment sizing and main design parameters

2 Table S2. Equipment sizing and main design parameters

Equipment & Parameters	Value	Units
CO ₂ Compressor		
Inlet Pressure	1.1	bar
Outlet Pressure	65	bar
Number of Stages	4	stages
Pressure Ratio	2.77	bar/bar
Compressor Efficiency	72	%
Intercooling	-1,991	kW
Compressor Power	2,299	kW
H ₂ Compressor		
Inlet Pressure	1.1	bar
Outlet Pressure	65	bar
Number of Stages	5	stages
Pressure Ratio	2.26	bar/bar
Compressor Efficiency	72	%
Intercooling	-4,447	kW
Compressor Power	5,685	kW
Recycle Compressor		
Inlet Pressure	63.5	bar
Outlet Pressure	65	bar
Number of Stages	1	stages
Compressor Efficiency	72	%
Pressure Ratio	1.024	bar/bar
Compressor Power	212	kW
Reactor		
Operating Pressure	65	bar
Operating Temperature	250	°C
Number of Tubes	670	tubes
Tube Diameter	6	cm
Tube Length	12	m
Mass of Catalyst	865	kg
Duty	-3,924	kW
Dividing Wall Column		
Number of Trays	29	trays
Reflux Ratio	9.2	mol/mol
Boilup Ratio	0.93	mol/mol
Methanol Draw Tray	4	tray
FEHE		
Туре	Shell and Tubes	-
Duty	6,454	kW
LMTD	72	Κ
Area	1,053	m^2

HEATER		
Туре	ype Shell and Tubes	
Duty	3,916	kW
LMTD	32	Κ
Area	821	m^2
VAPORIZER		
Туре	Shell and Tubes	-
Duty	8,143	kW
LMTD	44	Κ
Area	735	m^2
COOLER		
Туре	Air Cooler	-
Duty	-2,824	kW
LMTD	46	Κ
Area	1,364	m^2
REBOILER		
Туре	Shell and Tubes	-
Duty	4,793	kW
LMTD	40	Κ
Area	805	m^2
CONDENSER		
Туре	Shell and Tubes	-
Duty	-12,135	kW
LMTD	23	Κ
Area	703	m^2

1

2

3 3) Dividing wall column: simulation model

4 The DWC is simulated using four rigorous distillation RADFRAC columns located in a 5 simulation subflowsheet (Figure S1). All the RADFRAC columns are simulated without 6 reboiler or condenser since the DWC reboiler and condenser are located outside the 7 subflowsheet (Figure S2).

8 The liquid bottoms stream (DWC-10) of the upper RADFRAC column (DWC-TOP) is sent to 9 a splitter (LIQ-SPLI) that models the liquid splitter and controls the liquid split ratio. The resulting liquid streams (DWC-1 & DWC-6) are sent to the first trays of the left and right 10 RADFRAC columns (DWC-LEFT & DWC-RIGH) that represent the middle-divided section. 11 12 While the vapor streams obtained at the top of the left (DWC-LEFT) and right (DWC-RIGH) 13 RADFRAC columns are sent to the last tray of the upper RADFRAC column (DWC-TOP), 14 the liquid streams obtained at the bottoms of these RADFRAC columns (DWC-4 & DWC-11) are sent to the first tray of the lower RADFRAC column (DWC-BOT). Finally, the lower 15 16 RADFRAC column overhead vapor stream (DWC-9) is sent to a splitter (VAP-SPLI) that 17 models the vapor split, and the resulting vapor streams (DWC-2 & DWC-7) are sent to the 18 last trays of the left and right RADFRAC columns (DWC-LEFT & DWC-RIGH).

- 1 In the main flowsheet (Figure S2) a condensation temperature of 40°C is fixed in the DWC 2 condenser (CONDENSE), modeled as a cooler. After the condenser, the overhead 3 accumulator (OVH-ACCU) separates the vapor product (CO2-REC,) recycled to the CO₂ 4 compressor, from the reflux (REFLUX), recycled to the top tray of the upper RADFRAC 5 column (DWC-TOP). On the other hand, the column reboiler is simulated using a heat 6 exchanger (REBOILER) that uses as a heat source the reactor product stream (F4). The vapor 7 fraction of the reboiler outlet cold stream (REB-2) is adjusted to meet the required bottom 8 product (WATER) specification (99.99% mass). After the reboiler, a flash vessel (REB-FLAS) 9 separated the vaporized fraction (REB-3), returned to the last tray of the lower RADFRAC
- 10 column (DWC-BOT) from the DWC bottoms product (WATER).
- 11
- 10
- 12
- 13

- 14
- 15
- Figure S1. Dividing wall column: Aspen Plus simulation subflowsheet.
- 16

1 2

Figure S2. Dividing wall column: Aspen Plus simulation main flowsheet.

3

4 4) Greenhouse gas (GHG) emissions calculation:

5 The greenhouse gas (GHG) emissions are limited to those related to the production of 6 electricity and hydrogen, and to the capture of CO₂.

7

8 GHG emissions related to power production

According to the United Nations Economic Commission for Europe (2022), the CO₂ equivalent emissions related to the production of power using natural gas and wind are equal to 430 gCO₂eq/kWh and 12 gCO₂eq/kWh respectively. In the process presented in this work, 9590 kWh of power is consumed to produce 12500 kg/h of methanol. Thus, the GHG emissions related to power production are equal to:

14 15

-
$$(kgCO_{2eq}/kgMeOH)_{power} = kgCO_{2eq}/kWh\cdot kW\cdot / (kgMeOH/h)$$

 \circ 0.33 kgCO_{2eq} / kg MeOH (natural gas).

 \circ 0.01 kgCO_{2eq} / kg MeOH (wind).

18

19 GHG emissions related to hydrogen production

20 As reported by Bhandari et al. (2014), the GHG emissions related to the production of

- 21 hydrogen are equal to 8.5 $kgCO_2eq/kgH_2$ and 2 $kgCO_2eq/kgH_2$ when hydrogen is produced by
- steam reforming of natural gas and by electrolysis power by wind electricity respectively.

1 Taking into account that 2650 kg/h of H_2 are consumed in the plant, the GHG emissions 2 related to hydrogen production are equal to: 3 $(kgCO_{2eq}/kgMeOH)_{H2} = kgCO_{2eq}/kgH_{2} \cdot kgH_{2}/h/(kgMeOH/h)$ 4 1.802 kgCO_{2eq} / kg MeOH (steam reforming). 5 \circ 0.212 kgCO_{2eq} / kg MeOH (electrolysis powered by wind). 6 7 GHG emissions related to CO₂ capture 8 As reported by Koorneef et al. (2008), the net GHG emissions related to CO₂ capture are 9 equal to 0.015 kgCO₂eq/kgCO₂. Since 17164 kg/h of CO₂ are consumed in the plant, the 10 GHG emissions related to hydrogen production are equal to: 11 $(kgCO_{2eq}/kgMeOH)_{CO2} = kgCO_{2}eq/kgCO_{2} \cdot kgCO_{2}/h/(kgMeOH/h)$ 12 \circ 0.02 kgCO_{2eq} / kg MeOH. 13 14 **Total GHG emissions** 15 The total GHG emissions are equal to the sum of the emissions of the three previous sections: 16 $(kgCO_{2eq}/kgMeOH)_{tot} = (kgCO_{2eq}/kgMeOH)_{power} +$ $(kgCO_{2eq}/kgMeOH)_{H2} +$ _ 17 (kgCO_{2eq}/kgMeOH)_{CO2} 18 \circ 2.15 kgCO_{2eq} / kg MeOH (grey electricity). 19 \circ 0.24 kgCO_{2eq} / kg MeOH (green electricity). 20 21 Net GHG emissions 22 Considering that 17164 kg/h of CO₂ are consumed in the plant, the net GHG emissions are 23 equal to: 24 $(kgCO_{2eq}/kgMeOH)_{net} = (kgCO_{2eq}/kgMeOH)_{tot} - (kgCO_2/h/kgMeOH/h)$ _ 25 • 0.78 kgCO_{2eq} / kg MeOH (grey electricity). 26 • -1.13 kgCO_{2eq} / kg MeOH (green electricity). 27 28 References 29 1) Bhandari, R., Trudewind, C. A., & Zapp, P. (2014). Life cycle assessment of hydrogen 30 production via electrolysis - A review. In Journal of Cleaner Production (Vol. 85, pp. 31 151-163). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2013.07.048 32 2) Koornneef, J., van Keulen, T., Faaij, A., & Turkenburg, W. (2008). Life cycle 33 assessment of a pulverized coal power plant with post-combustion capture, transport 34 and storage of CO2. International Journal of Greenhouse Gas Control, 2(4), 448-467. https://doi.org/10.1016/j.ijggc.2008.06.008 35 36 3) United Nations Economic Commission for Europe. (2022). Carbon Neutrality in the 37 UNECE Region: Integrated Life-cycle Assessment of Electricity Sources. https://unece.org/sites/default/files/2022-04/LCA_3_FINAL%20March%202022.pdf 38 39