Supplementary information

A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production

In the format provided by the authors and unedited

Inventory of Supplementary Information File:

List of Supplementary Tables:

Supplementary Table 1 | List of state-of-the-art CO₂ and CO electrolysers and their relevant values to this work.

Supplementary Table 2 | Measured concentrations and calculated faradaic efficiencies of liquid products detected in effluents after recirculation.

Supplementary Table 3 | Composition of effluent-based media used for microbial growth.

Supplementary Table 4 | Previous studies that investigate acetate incorporation into plant metabolites.

Supplementary Table 5 | Efficiency of *Saccharomyces* grown with different concentrations of effluent or glucose.

Supplementary Table 6 | List of values both calculated and derived for the calculation of the energy efficiency for the two-step electrolyser system.

Supplemental Note: Optimizing CO₂ electrolysis for food production.

List of Supplementary Figures:

Supplementary Figure 1 | Electrolyser produced and simulated effluents used in growth media allow for similar growth.

Supplementary Figure 2 | The effluent electrolyte hinders *Chlamydomonas* growth and effluent with low acetate-to-electrolyte salt concentration does not support growth of *Chlamydomonas*.

Supplementary References

Supplementary Table 1 | List of state-of-the-art CO2 and CO electrolysers and their relevant values to this work

Report	Feed	Applied Potential (VCO ₂ /VCO)	Acetate partial current density (g day-1)	Acetate production rate (g day-1)	Acetate production rate (g day ⁻¹ cm ⁻²)	Acetate: electrolyte ratio	Fed CO ₂ to acetate (%)	Year
This work	CO ₂	2.95*/2.3*	51.02	3.43	0.686	0.75	25.39	2021
Ma et al.61	CO_2	-0.9 V vs. RHE/N.A.	24.03	0.645	0.645	0.00075	1.67	2020
de Arquer et al. ¹⁶	CO ₂	4.5*/N.A.	34.89	0.938	0.938	0.00083	0.97	2020
Romero Cuellar et al.23	CO_2	-1 V vs. RHE/-0.8 V vs. RHE	5.43	0.73	0.073	0.0013**	0.53	2020
Ripatti el al. ¹⁸	СО	N.A./2.4*	33.99	0.457	0.457	0.4	N/A	2019
Luc et al.12	со	N.A./-0.8 V vs. RHE	130.92	1.76	1.76	0.005	N/A	2019
Gabardo et al.13	CO_2	4.1*/N.A.	6.99	0.941	0.188	0.021	0.61	2019
Jouny et al. ¹⁷	CO	N.A./-0.6 V vs. RHE	106.4	1.43	1.43	0.016	N/A	2018
Lv, J el al. ¹⁴	CO_2	-0.66 V vs. RHE/N.A.	7.22	0.19	0.19	0.002	1	2018

* denotes full cell potential of system (systems with half cell potential full cell was not reported). The value is listed as a positive for the full cell, negative for the half cell as it is a reductive reaction.

** denotes a volume assumed to be 500 ml, based on recirculation rate reported as 200 ml minute⁻¹.

Supplementary Table 2 | Measured concentrations and calculated faradaic efficiencies of liquid products detected in effluents after recirculation

		Measured effluent concentrations (M)					Calculated faradaic efficiencies (FE %))	
Effluent	Electrolysis details	КОН	KHCO ₃	Acetate	Ethanol	Propionate	1-Propanol	Acetate	Propionate	Ethanol	n-Propanol	Ethylene
0.015 M acetate: 1 M KOH*	Direct CO feed	2.0	-	0.030	0.0013	-	0.0004	48.0	0.0	2.4	2.0	16.3
0.077 M acetate: 1 M KHCO3*	Direct CO feed	-	1.0	0.077	0.0130	0.013	0.0099	22.8	1.9	1.8	1.2	19.6
0.2 M acetate: 1 M KHCO3*	Direct CO feed	-	0.5	0.100	0.0020	0.007	0.0007	16.4	0.0	0.4	2.2	15.8
0.38 M acetate: 1 M KHCO3*	Direct CO feed	-	1.0	0.380	0.0130	0.013	0.0099	24.7	2.6	9.5	10.7	30.4
0.4 M acetate: 1 M KOH	CO ₂ feed ^a	1.0	-	0.400	0.0500	0.096	0.0580	13.6	9.7	3.4	5.9	36.0
0.476 M acetate: 1 M KHCO ₃	Direct CO feed	-	1.0	0.476	0.0545	0.012	0.0182	6.9	0.2	0.5	0.3	28.3
0.648 M acetate: 1 M KHCO ₃	Direct CO feed	-	1.0	0.648	0.0280	0.008	0.0120	5.6	0.3	1.0	0.5	27.9
0.691 M acetate: 1 M KOH	Direct CO feed	2.0	-	1.382	-	0.084	-	28.2	1.7	0.0	0.0	23.8
0.75 M acetate: 1 M KOH	CO ₂ feed ^b	1.0	-	0.750	0.0130	0.130	0.0060	33.9	9.0	0.6	0.6	40.2

^aWithout NaOH scrubber

^bWith NaOH scrubber

*Indicates simulated effluent

Supplementary Table 3 | Composition of effluent based media used for microbial growth

Media component (M)

							_		
Effluent used in media	КОН	KHCO ₃	Acetate	Ethanol	Propionate	1-Propanol	Organism	Growth observed	Figure utilized in
0.015 M acetate: 1 M KOH*	1.1100	-	0.0167	0.0007	-	0.0002	Chlamydomonas	no	Supplementary Fig. 19
0.077 M acetate: 1 M KHCO3*	-	0.2162	0.0167	0.0028	0.0028	0.0021	Chlamydomonas	no	Supplementary Fig. 18b-c
0.2 M acetate: 1 M KHCO3*	-	0.2162	0.0167	0.0028	0.0028	0.0021	Chlamydomonas	no	Supplementary Fig. 18a
0.38 M acetate: 1 M KHCO3*	-	0.0460	0.0175	0.0006	0.0006	0.0005	Chlamydomonas	yes	
0.476 M acetate: 1 M KHCO ₃	-	0.0350	0.0166	0.0019	0.0004	0.0006	Chlamydomonas	yes	Supplementary Fig. 6 and 19
0.648 M acetate: 1 M KHCO3	-	0.0257	0.0166	0.0007	0.0002	0.0003	Chlamydomonas	yes	Supplementary Fig. 6
0.691 M acetate: 1 M KOH	0.0241	-	0.0166	-	0.0010	-	Chlamydomonas	yes	Figure 3a and supplementary Fig. 6
0.691 M acetate: 1 M KOH*	0.3533	-	0.2442	-	0.0148	-	Saccharomyces	yes	Supplementary Fig. 17
0.75 M acetate: 1 M KOH	0.0233	-	0.0175	0.0003	0.003	0.0001	Chlamydomonas	yes	Figure 3b-c
0.75 M acetate: 1 M KOH	0.0813	-	0.0609	0.0011	0.0106	0.0005	Saccharomyces	yes	Figure 3d-e, Supplementary Fig. 17

*Indicates simulated effluent

Supplementary Table 4 | Previous studies that investigate acetate incorporation into plant metabolites

			-		
Plant species	Publication	Method of delivery	Labeled acetate used	Year	Metabolites examined
Tomato	Hill et al.62	injected into the fruit	2-14C Acetate	1969	sterol, β-carotene, lycopene
Lettuce	Raymond et al.63	liquid incubation	2-14C Acetate	1985	P-esters, citrate, malate, succinate, fumarate, alanine, serine, aspartate, asparagine, glutamine, GABA, leucine/isoleucine
Nicotiana benthamiana	El Tahchy et al.64	leaf disc in liquid	¹⁴C Acetate	2017	lipids
Arabidopsis thaliana	Fu et al. ⁶⁵	grown on supplemented media	2-13C Acetate	2020	histidine, serine, glycine, phenylalanine, alanine, valine, isoleucine, leucine, citrate, glutamate, glutamine, succinate, fumarate, malate, aspartate, asparagine, lysine, methionine, ornithine, proline, GABA
Rice	Tsuda ⁶⁶	seedling	2-13C Acetate	2011	poly-β-hydroxybutyrate
Wheat	Tsuda ⁶⁶	seedling	2-13C Acetate	2011	poly-β-hydroxybutyrate
Wheat	Williams et al.67	leaves incubated in solution	1-¹⁴C Acetate	1998	lipids
Corn	Ashworth et al.68	suspension cells	1-13C and 2-13C Acetate	1985	palmitate, stearate, linoleate
Soybean	Slack et al.69	excised cotyledons	1-¹⁴C Acetate	1978	glycerolipids

Supplementary Table 5 | Efficiency of Saccharomyces grown with different concentrations of effluent or glucose

Carbon/energy source	Concentration ^a (M)	Energy content ^b (kJ I ⁻¹)	Yield (g yeast g glucose ⁻¹)	Yeast produced per area ^c (g yeast m ⁻²)	Fold change ^d
Effluent (0.75 M acetate: 1 M KOH)	0.061	53.36	0.1889	6,729	18.24
Effluent (0.75 M acetate: 1 M KOH)	0.122	106.72	0.1122	3,997	10.83
Effluent (0.75 M acetate: 1 M KOH)	0.183	160.08	0.0567	2,020	5.47
Effluent (0.75 M acetate: 1 M KOH)	0.244	213.44	0.0441	1,571	4.26
Glucose	0.019	53.36	0.2429	179	
Glucose	0.038	106.72	0.1594	117	
Glucose	0.057	160.08	0.1392	103	
Glucose	0.076	213.44	0.1195	88	

^aConcentration of carbon source in media

^bEnergy content from carbon source in media

^cYeast produced per area using artificial photosynthesis (effluent) or traditionally (glucose), as calculated above.

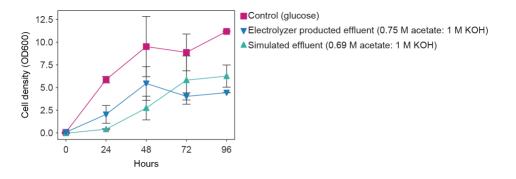
^dFold change of yeast produced per area using our process, compared to yeast produced per area traditionally with optimized growth of yeast on glucose. (Y_{xS}= 0.5).

Supplementary Table 6	List of values both calculated and derived for the calculation of the energy efficiency for the two-step electrolyser system

C ₂₊ product	Faradaic efficiency (%)	Mass production ^a (g)	Theoretical potential (V)	Electrons passed (n)
Acetate	33.9	0.716	0.73	4
Propionate	9	0.063	1.027	12
Ethanol	0.57	0.0046	1.052	8
n-Propanol	0.62	0.0044	1.027	12
Ethylene	43	0.212	1.049	8
Hydrogen	15.4	N/A	1.23	2

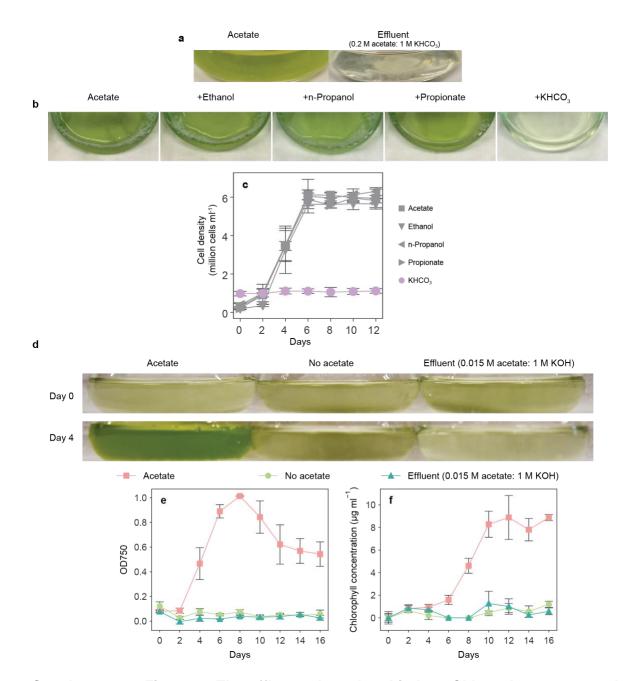
 $^{a}C_{2^{+}}$ product distribution shown for 1 g of the $C_{2^{+}}$ products

^bNumber of electrons passed from CO per mol produced during CO electrolysis


Supplemental Note

Optimizing CO₂ electrolysis for heterotrophic growth

Some experiments required more effluent than was available, so simulated effluents were generated with the same concentrations of each component. No major difference was observed between organisms grown on electrolyser produced or simulated effluents (Supplementary Fig. 1). No growth was observed for algal cultures in media made with the simulated effluent (0.2 M acetate: 1 M KHCO₃), presumably due to inhibition by a component of the effluent (Supplementary Fig. 2a). We performed a "drop-in" experiment of all known effluent components in the highest of productive value ranges to determine the cause of growth inhibition and found the electrolyte salt, KHCO₃, was the only inhibitor (Supplementary Fig. 2a-c). Effluent utilizing an alternative electrolyte, KOH (in simulated 0.015 M acetate: 1 M KOH), also did not support growth of *Chlamydomonas* and caused a 50% loss of cell biomass over 16 days (Supplementary Fig. 2d-f). Together these findings, along with previously published data that shows acute exposure to potassium chloride can cause cell death in *Chlamydomonas*^{70,71}, suggest that the electrolyte (KOH or KHCO₃) is causing growth inhibition. To use the effluent for growth directly, the acetate concentration needed to be increased relative to the electrolyte.


To improve the acetate concentration of the effluent, we hypothesized that a highly alkaline environment could increase the selectivity and production rate of acetate^{12,17}. The use of 2 M KOH as the supporting electrolyte in the CO electrolyser led to a 3-fold increase in acetate production rate and higher acetate selectivity compared to 1 M KHCO₃ (Extended Data Fig. 1c-d, Supplementary Table 3). For biological compatibility, alkaline electrolyte remaining in the effluent has to be neutralized before it is added to growth media. To reduce the concentration of KOH in the final effluent, our electrolysers were designed as an anion exchange membrane electrode assembly. This allows the acetate concentration of the effluent to be controlled by the operating current density (i.e., the reaction rate) and the duration of electrolysis (i.e., the anolyte circulation time). Optimization of these parameters resulted in 99% of the produced acetate to be collected

in the anolyte. Recirculating the electrolyte improved the acetate-to-electrolyte salt ratios, ranging from 0.471 to 0.75 compared to initial electrolyte streams with a ratio of 0.015.

Supplementary Figure 1: Electrolyser produced and simulated effluents used in growth media allow for similar growth.

Optical density (OD) (600 nm) over 96 hours of *Saccharomyces cerevisiae* grown at 30 °C in Yeast-Peptone-Dextrose (YPD) media with glucose (13.7 g l⁻¹), electrolyser produced effluent (0.75 M acetate: 1 M KOH), or simulated effluent (0.69 M acetate: 1 M KOH) as the primary energy and carbon sources. Effluents were added to match the energetic equivalence of 13.7 g l⁻¹ glucose (213.44 kJ l⁻¹). Growth data from electrolyser and simulated effluents are from independent experiments conducted at different times which may account for minor differences observed. Each data point represents three replicates. Error bars indicate standard deviations.

Supplementary Figure 2: The effluent electrolyte hinders *Chlamydomonas* growth and effluent with low acetate-to-electrolyte salt concentration does not support growth of *Chlamydomonas*.

a, Images of *Chlamydomonas* cultures taken after 7 days of growth in darkness, cultures grown with acetate or simulated effluent (0.2 M acetate: 1 M KHCO₃). **b**, **c** *Chlamydomonas* grown in the dark in different media, each containing one component of a proposed "worst-case scenario"

effluent (0.077 M acetate: 1 M KHCO₃) containing the lowest concentration of acetate and highest amount of other components. The other effluent components evaluated were ethanol (0.0028 M), n-propanol (0.0021 M), propionate (0.0028 M), and KHCO₃ (0.2162 M). (**b**) Images taken on day 12. Cultures were grown in Tris-Acetate-Phosphate (TAP) media with acetate, with acetate and the addition of one effluent component, or with effluent in place of acetate to match the acetate concentration of a typical liquid heterotrophic growth medium (17.5 mM). **d**, **e**, **f**, *Chlamydomonas* grown in the dark with simulated effluent (0.015 M acetate: 1 M KOH), acetate, and no acetate. (**d**) Images taken on day 0 and day 4, (**e**) optical density (OD) (750 nm), (**f**) and chlorophyll concentration. Cultures were grown in Tris-Acetate to match the acetate concentration of a typical liquid heterotrophic growth media was adjusted to pH 7.2. Each data point represents three replicates. Error bars indicate standard deviations. Images are representative of replicates.

References

- 61. Ma, W. *et al.* Electrocatalytic reduction of CO₂ to ethylene and ethanol through hydrogenassisted C–C coupling over fluorine-modified copper. *Nature Catalysis* **3**, 478–487 (2020).
- Hill, H. M., Shah, S. P. J. & Rogers, L. J. Incorporation of [2-¹⁴C]glyoxylate, [2-¹⁴C]acetate and [2-¹⁴C]mevalonic acid into terpenoids during ripening of tomato fruit. *Phytochemistry* vol. 9 749–755 (1970).
- Raymond, P., Carre-Nemesio, A. M. & Pradet, A. Metabolism of [¹⁴C]ss-glucose and [¹⁴C]acetate by lettuce embryos during early germination. *Physiologia Plantarum* vol. 64 529– 534 (1985).
- El Tahchy, A., Reynolds, K. B., Petrie, J. R., Singh, S. P. & Vanhercke, T. Thioesterase overexpression in *Nicotiana benthamiana* leaf increases the fatty acid flux into triacylgycerol. *FEBS Lett.* **591**, 448–456 (2017).
- Fu, X., Yang, H., Pangestu, F. & Nikolau, B. J. Failure to Maintain Acetate Homeostasis by Acetate-Activating Enzymes Impacts Plant Development. *Plant Physiol.* 182, 1256–1271 (2020).
- Tsuda, H. Generation of poly-β-hydroxybutyrate from externally provided acetate in rice root. *Plant Physiol. Biochem.* **50**, 35–43 (2012).
- Williams, M., Leech, R. M., Robertson, E. J. & Harwood, J. L. Lipid metabolism in leaves from young wheat (*Triticum aestivum* cv. Hereward) plants grown at two carbon dioxide levels. *J. Exp. Bot.* 49, 511–520 (1998).
- Ashworth, D. J., Lee, R. Y. & Adams, D. O. Characterization of acetate and pyruvate metabolism in suspension cultures of *Zea mays* by ¹³C NMR Spectroscopy. *Plant Physiol.* 85, 463–468 (1987).
- Slack, C. R., Roughan, P. G. & Balasingham, N. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-¹⁴C] acetate and [2-³H] glycerol. *Biochem. J* **170**, 421–433 (1978).

- Vavilala, S. L., Sinha, M., Gawde, K. K. & Shirolikar, S. M. KCl induces a caspaseindependent programmed cell death in the unicellular green chlorophyte *Chlamydomonas reinhardtii* (Chlorophyceae). *Phycologia*, **55**(4), 378-392 (2016).
- 71. Fan, J. & Zheng, L. Acclimation to NaCl and light stress of heterotrophic *Chlamydomonas reinhardtii* for lipid accumulation. *J. Biosci. Bioeng.* **124**, 302–308 (2017).