TiO$_2$-containing bulk Ni$_2$P catalysts (Ti$_x$-Ni$_2$P) were prepared by coprecipitation and in situ H$_2$ temperature-programmed reduction (TPR), and characterized by XRD, CO chemisorption, TEM, XPS, TPR, and NH$_3$-TPD. Their hydrodenitrogenation performances were studied by using quinoline and decahydroquinoline (DHQ) as the model molecules. Both the hydrogenation and C–N bond cleavage activities of Ni$_2$P were improved by the introduction of TiO$_2$. The TiO$_2$ species were mainly located separately on the surface of the catalysts and had strong interactions with surface Ni and P species. The reducibility of the precursors as well as the surface electronic properties of Ni$_2$P catalysts were affected by the addition of TiO$_2$. Ti$_x$-Ni$_2$P showed higher CO uptake but less acid sites than Ni$_2$P. The promoting effect of TiO$_2$ was discussed by considering the electronic interactions between surface Ti and Ni$_2$P species and changes in the adsorption geometries of quinoline, DHQ, as well as the partially hydrogenated intermediates over Ti$_2$-Ni$_3$P.

1. Introduction

Catalytic hydrotreating is an important refining process to remove sulfur, nitrogen, and oxygen from liquid hydrocarbon fuels.\(^1\)\(^-\)\(^3\) The conventional hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) catalysts are alumina-supported Mo or W sulfides promoted by Ni or Co. Generally, HDN is more difficult than HDS over these supported metal sulfides.\(^4\)

Transition metal phosphides have recently been reported to be a new class of high-performance HDS and HDN catalysts.\(^5\)\(^-\)\(^7\) Among the phosphides studied, Ni$_2$P was found to be the most active phase in the iron group compounds. Ni$_2$P crystallizes in the Fe$_2$P structure type.\(^8\) The electron microscopy (EM) analysis indicated that its morphology is like a rough, irregular particle.\(^8\) The structure of the phosphides can be probed by XRD, EXAFS, and 31P MAS NMR.\(^9\) The metallic character of nickel phosphides classifies their large 31P NMR shifts as Knight shifts, which enables them to be distinguished from those of diamagnetic phosphates.\(^10\) For unsupported Ni$_2$P, two isotropic chemical shifts at 1487 and 4076 ppm were observed due to the presence of two types of P atoms in the structure.\(^10\) None of the structures of phosphides is a layered one, as is the case for MoS$_2$.\(^11\) Therefore, the activities of the phosphides are supposed to be proportional to their surface areas.\(^11\) The unsupported Ni$_2$P shows relatively low surface areas. The reported values, as determined by N$_2$ adsorption, ranged from 1 to 17 m2/g\(^9\)\(^-\)\(^13\) XPS investigation showed the binding energy (BE) of the nonoxidic Ni 2p$_{3/2}$ band in Ni$_2$P (853.3) was between that of Ni metal (852.2 eV) and NiO (855.8 eV), whereas the BE of nonoxidic P 2p (129.7 eV) was somewhat lower than that of elemental P (130.1 eV).\(^13\) The temperature-programmed reduction (TPR) measurements revealed that the transformation of oxidic precursor to Ni$_2$P starts with the formation of Ni metal from NiO, followed by the reduction of phosphates at higher temperatures to volatile P compounds that react with the Ni to Ni$_3$P, with Ni$_3$P and Ni$_2$P$_5$ as possible intermediates.\(^10\) Rodriguez et al.\(^14\) studied the formation of bulk and SiO$_2$-supported MoP, Ni$_2$P, and NiMoP by time-resolved XRD. They found that the formation of the metal phosphides occurred at temperatures between 600 and 800 °C, which was independent of the type of oxidic precursor used or the presence of silica as a support. Because the common species in all the cases are phosphate-type groups (PO$_x$), they suggested that reduction of PO$_x$ by hydrogen is the final and determining step in the formation of the phosphides.

However, contrary to the bimetallic sulfide catalysts, no apparent synergy effect between Ni(Co) and Mo(W) in transition metal phosphides was observed. Rodriguez et al.\(^14\) found that MoNiP/SiO$_2$ was much less active than either MoP/SiO$_2$ or Ni$_3$P/SiO$_2$ for the HDS of thiophene. Sun et al.\(^15\) studied the HDS of DBT over silica-supported MoP, Ni$_2$P, and NiMoP catalysts, but no synergetic effect was observed between the phosphided Ni and Mo atoms. Uzzanui and Prins\(^16\) as well as Stinner et al.\(^11\) reported that both supported and unsupported ternary phosphides, such as CoMoP and NiMoP, were less active than MoP and Co$_3$P in the HDN of 1-propylaniline. However, when H$_2$S is introduced, CoMoP and NiMoP were more active than Co$_3$P and Ni$_2$P and remained so even after H$_2$S was removed, indicating Mo may have a beneficial effect under these conditions.\(^11\) More recently, Abu and Smith\(^12\) reported that introduction of a small amount of Co to bulk Ni$_2$P and MoP led to a significant increase in the direct desulfurization selectivity during the conversion of 4,6-dimethylbenzothiophene. According to them, the changes in selectivity corresponded to the changes in the surface Brønsted acidity and the metal sites.
They also studied the HDN of carbazole over Ni₅MoP, but found that Ni₅MoP had a lower TOF, whereas the selectivity to bicyclohexane was higher for Ni₅MoP than for MoP. They attributed the increased C–N bond cleavage activity to the increase in the acidity of the catalyst.

Generally, the HDN activity of CoMo or NiMo sulfides supported on TiO₂-Al₂O₃ mixed oxides is superior to that of conventional γ-Al₂O₃ supported CoMo or NiMo sulfides. Under these circumstances, TiO₂ also acts as a promoter. Both the reducibility and the sulfidability of these catalysts are improved by the addition of TiO₂ to γ-Al₂O₃. In the present work, we studied the promoting effect of TiO₂ on bulk Ni₂P in the HDN of quinoline (Q) and decahydroquinoline (DHQ), the fully hydrogenated intermediate in Q HDN. Quinoline was chosen as the model molecule because it is one of the typical basic nitrogen-containing compounds in oil fractions. Moreover, due to its molecular structure, all reactions that take place in an industrial HDN process also occur in the HDN network of quinoline, that is, C–N bond cleavage, hydrogenation of aromatic heterocyclic rings, and hydrogenation of benzenic rings.

2. Experimental Methods

2.1. Preparation of Catalyst Precursors. The precursors of TiO₂-containing bulk Ni₂P were prepared by the coprecipitation method. In a typical procedure, 3.90 g of Ni(NO₃)₂·6H₂O (A. R. grade) was dissolved in 15 mL of deionized water. The required quantity of TiCl₄, dissolved in ethanol (0.14 mol/L), was added to the aqueous solution to form a clear solution. Subsequently, 1.77 g of (NH₄)₂HPO₄ (A. R. grade) dissolved in 10 mL of deionized water was added dropwise under stirring. After the addition of (NH₄)₂HPO₄ solution, the mixture was stirred while the water was evaporated to obtain a solid product. The resulting solid was further dried at 120 °C for 12 h and calcined at 500 °C for 6 h to obtain the final oxidized precursor. Compared with the stoichiometric Ni/P ratio, surplus P was used because of the loss of phosphorus during the reduction stage. The TiO₂-containing nickel phosphides are denoted as Tiₓ-Ni₅P, where x represents the Ti/Ni atomic ratio.

For comparison, a bulk Ni₅P and a mechanical mixture of P₂O₅ and TiO₂ (denoted as P-Ti) were also prepared. The atomic ratio of P/M (M = Ni or Ti) in the precursors was 1.

2.2. HDN Activity Measurement. Prior to HDN reaction, instead of the conventional ex-situ H₂ TPR method, an in situ H₂ TPR method was used to transform the precursor into the active phase. The precursor was pelletized, crushed, and sieved to 20–30 mesh. A total of 0.20 g of precursor was used for each run. The precursor was reduced in a 200 mL/min H₂ flow by heating from room temperature to 400 °C at 2 deg/min, then to 500 at 1 deg/min, and holding at 500 °C for 2 h.

After the precursor had been converted into a nickel phosphide, the reactor was cooled to the HDN reaction temperature. The HDN activities of the catalysts were investigated by using a solution of 1% (weight) Q or 0.8% (weight) DHQ in decalin (A. R. grade) as the model feed. The HDN reaction conditions were as follows: temperature 300–360 °C, total pressure 4 MPa, WHSV 24 h⁻¹, and H₂ flow 150 mL/min (at atmospheric pressure). Sampling of HDN liquid products was started 6 h after the reaction condition had been achieved. For each run, three to five liquid samples were collected at an interval of 20 min. The compositions of both feed and hydrogenation liquid products were analyzed by an Agilent-6890N gas chromatograph equipped with a FID detector, using a commercial HP-5 column.

Scheme 1 shows the reaction network of quinoline HDN. The conversion of Q to 1,2,3,4-tetrahydroquinoline (THQ1) is very fast, and most likely equilibrium is reached in every experiment. Moreover, there are several nitrogen-containing intermediates in the HDN of quinoline, such as THQ1, 5,6,7,8-tetrahydroquinoline (THQ5), o-propylaniline (OPA), and DHQ. Conversions of Q or DHQ cannot be used to represent the HDN efficiency. Therefore, HDN conversion was used to measure the HDN efficiency of the catalysts:

\[
\text{HDN conversion} = \frac{C_{\text{NO}} - C_{\text{NR}} - C_{\text{NC}}}{C_{\text{NO}}} \times 100
\]

where \(C_{\text{NO}} \) represents the concentration of reactant (Q or DHQ) in the feed, \(C_{\text{NR}} \) is the concentration of reactant (Q or DHQ) in the HDN liquid product, \(C_{\text{NC}} \) is the sum of the concentrations of all nitrogen-containing intermediates in the HDN liquid product, and \(\sum C_{\text{HC}} \) is the sum of the hydrocarbon concentrations. The HDN conversion and CO uptake were used to calculate the HDN turnover frequency (HDN TOF) of the catalysts.

2.3. Catalyst Characterization. TPR profiles of the catalyst precursors were measured on a Chembet-3000 analyzer, using 0.10 g of calcined sample. Before the measurement, the sample was pretreated in He at 200 °C for 2 h. A gas mixture of 10% (volume) H₂ in Ar was used as the reacting agent and the TPR profiles of the catalysts were measured from 100 to 1000 at 10 deg/min.

The XRD patterns of the catalysts and P-Ti were measured on a Rigaku D/MAX 2400 diffractometer with nickel-filtered Cu Kα radiation at 40 kV and 100 mA. Natural graphite was used as the internal standard to obtain absolute peak positions. Transmission electron microscopy (TEM) images of Ni₅P and Ti₀.₀₇-Ni₅P were taken with a JEM-100CXII microscope at an accelerating voltage of 180 kV. X-ray photoelectron spectroscopy (XPS) spectra were obtained with a Multilab2000 X-ray photoelectron spectrometer, using an Mg Kα source. For the individual energy regions, a pass energy of 20 eV was used. All binding energies were referenced to the C 1s peak at 284.6 eV. Before the XRD, TEM, and XPS measurements, all the samples were prepared according to the same reduction conditions as used in the in situ reduction, followed by passivation with 0.5% (volume) O₂ in Ar.

The CO uptake was measured by using pulsed chemisorption according to the literature. About 0.2 g of passivated, air-exposed sample was rereduced in a H₂ flow to remove the passivation layer (80 mL/min flow rate, heating from 25 to 500 °C at a rate of 10 deg/min, and then being held at the final temperature for 1 h). The reactor was then cooled to 30 °C in a flow of H₂. An Ar flow at 80 mL/min was used to flush the catalyst for 30 min to achieve an adsorbate-free, reduced catalyst...
surface. After pretreatment, 1.25 mL pulses of CO at a volume concentration of 1% in Ar were injected into a flow of Ar (80 mL/min), and the CO uptake was measured by using a TCD. CO pulses were repeatedly injected until the response from the detector showed no further CO uptake after consecutive injections.

NH$_3$ temperature-programmed desorption (NH$_3$-TPD) experiments were performed on a Chembet-3000 analyzer to determine the acid properties of the catalysts. Before TPD measurements, a 0.2 g passivated sample was rereduced in H$_2$ for 1 h at 500 °C, and was then cooled to 40 °C and exposed to NH$_3$ for 30 min. After the reactor was purged in a He flow, the temperature was raised at a linear rate of 10 deg/min to 500 °C.

3. Results

3.1. Characterization. The XRD patterns of the Ni$_2$P, Ti$_x$-Ni$_2$P samples, and natural graphite (the internal standard) are shown in Figure 1. A Ni$_2$P phase (powder diffraction file 74-1385) was present in the Ti$_x$-Ni$_2$P and Ni$_2$P catalysts. However, the bulk nickel phosphide sample also showed small amounts of impurities in the absence of TiO$_2$. These impurities are assigned to nickel phosphates, i.e., Ni$_2$P$_4$O$_{12}$ (powder diffraction file 76-1557). With the addition of TiO$_2$, only the typical diffraction patterns of Ni$_2$P were observed, indicating that the addition of a small amount of TiO$_2$ to the precursor favors the formation of Ni$_2$P. Its XRD pattern also demonstrates that the reduced P-Ti sample was present in an amorphous structure, suggesting that phosphorus does not react with titanium to form titanium phosphide under the conditions used to prepare nickel phosphides. Table 1 summarizes the XRD data of Ni$_2$P and Ti$_x$-Ni$_2$P.

<table>
<thead>
<tr>
<th>catalyst</th>
<th>hkl</th>
<th>temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$_2$P</td>
<td>(111) 40.7</td>
<td>44.6 47.4</td>
</tr>
<tr>
<td>Ti$_{0.01}$-Ni$_2$P</td>
<td>(201) 40.7</td>
<td>44.6 47.4</td>
</tr>
<tr>
<td>Ti$_{0.03}$-Ni$_2$P</td>
<td>(210) 40.7</td>
<td>44.5 47.3</td>
</tr>
<tr>
<td>Ti$_{0.1}$-Ni$_2$P</td>
<td>(002) 40.6</td>
<td>44.5 47.3</td>
</tr>
</tbody>
</table>

This can be attributed to the partial reduction of Ti$^{4+}$ to low-valence Ti species.23 The TPR profile of the Ni$_2$P precursor consisted of two main features, one at low temperature (675 °C) and the other at higher temperature (860 °C). The low-temperature peak corresponds to the reduction of nickel oxide to metallic nickel.24 The high-temperature peak is assigned to the formation of nickel phosphides, the reduction of excess phosphate, or both.25 In the presence of TiO$_2$, the low-temperature reduction peak became sharp and narrow and shifted to higher temperature, while the high-temperature reduction peak remained almost unaffected. Moreover, a broad shoulder appeared at 639 °C. The intensity of this shoulder peak increased with increasing Ti/Ni ratio.

NH$_3$-TPD was performed to investigate the acid properties of the Ni$_2$P and Ti$_x$-Ni$_2$P catalysts. The profiles are shown in Figure 3. The Ni$_2$P sample showed two peaks, one at a low temperature of 115 °C and the other at a high temperature of 315 °C. After the addition of TiO$_2$, the intensity of the high-temperature peak at 315 °C decreased remarkably.

XPS spectra in the Ni(2p) and P(2p) regions for the reduced catalysts are shown in Figure 4. All spectra showed oxidized Ni and P species, because after synthesis the catalysts were passivated with 0.5% O$_2$ in Ar to protect them from deep oxidation. For Ni$_2$P, the bands at 857.9 (Figure 4a) and 134.8 eV (Figure 4b) are assigned to Ni$^{2+}$ and P$^{5+}$ species, respec-
tively, in the passivated layer formed on the surface of Ni$_2$P particles.12,26 The peaks observed at 853.7 (Figure 4a) and 129.3 eV (Figure 4b) are assigned to reduced Ni and P species in Ni$_2$P.12,26 In the presence of TiO$_2$, the BE of the surface Ni$^{2+}$ species shifted from 857.9 to 857.4 eV (Figure 4a), and the BE assigned to the surface P$^{5+}$ species shifted from 134.8 to 133.9 eV (Figure 4b). However, the binding energies assigned to reduced Ni and P species in Ni$_2$P were almost unaffected by the addition of TiO$_2$.

The relative surface Ti/Ni atomic ratios of the Ti$_x$-Ni$_2$P and Ni$_2$P samples determined by XPS (r_{XPS}) are presented in Table 3. The Ti$_{0.01}$-Ni$_2$P and Ti$_{0.03}$-Ni$_2$P samples both had higher Ti/Ni ratios than the corresponding nominal values (r_n), suggesting that Ti surface enrichment occurred upon reduction. The Ti$_{0.1}$-Ni$_2$P sample had a lower Ti/Ni ratio than the nominal value, indicating that the addition of TiO$_2$ decreased the Ti/Ni ratio.

The CO uptake capacities of the Ni$_2$P and Ti$_x$-Ni$_2$P catalysts are also presented in Table 3. The CO uptake of Ti$_{0.01}$-Ni$_2$P (5.1 µmol/g) was almost the same as that of Ni$_2$P (5.0 µmol/g), while the CO uptake of Ti$_{0.03}$-Ni$_2$P (8.1 µmol/g) was the highest. The CO uptake decreased to 7.0 µmol/g for Ti$_{0.1}$-Ni$_2$P.

Phosphide sites can be titrated by CO chemisorption at room temperature.6 Irreversible CO uptake measurements were used to titrate the surface metal atoms and to provide an estimate of the active sites on the catalysts.20 The measured CO adsorption capacities are presented in Table 3. The data show that the CO uptake of Ti$_{0.01}$-Ni$_2$P (5.1 µmol/g) was almost the same as that of Ni$_2$P (5.0 µmol/g). The maximum CO uptake (8.1 µmol/g) was observed for Ti$_{0.03}$-Ni$_2$P and then the value decreased with further increasing the content of TiO$_2$.

Table 3: CO uptake and Ti/Ni atomic ratio of Ti$_x$-Ni$_2$P and Ni$_2$P

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Ti/Ni atomic ratio</th>
<th>r_n</th>
<th>r_{XPS}</th>
<th>r_{XPS}/r_n</th>
<th>CO uptake (µmol·g$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$_2$P</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>5.0</td>
</tr>
<tr>
<td>Ti$_{0.01}$-Ni$_2$P</td>
<td>0.01</td>
<td>0.04</td>
<td>4.00</td>
<td>4.00</td>
<td>5.1</td>
</tr>
<tr>
<td>Ti$_{0.03}$-Ni$_2$P</td>
<td>0.03</td>
<td>0.11</td>
<td>3.07</td>
<td>3.07</td>
<td>8.1</td>
</tr>
<tr>
<td>Ti$_{0.1}$-Ni$_2$P</td>
<td>0.10</td>
<td>0.20</td>
<td>2.00</td>
<td>2.00</td>
<td>7.0</td>
</tr>
</tbody>
</table>

r_n: the nominal Ti/Ni atomic ratio. r_{XPS}: the Ti/Ni atomic ratio determined by XPS.

3.2. HDN of Quinoline. Figure 6 shows the variations of Q conversion with temperature during HDN catalyzed by Ni$_2$P and Ti$_x$-Ni$_2$P catalysts. At 300 °C, the conversion of Q was as
high as 95% over Ni2P, and then decreased with temperature. The addition of TiO2 to Ni2P led to a slight increase in the Q conversion. Even at 360 °C, the highest reaction temperature studied in the present work, the Q conversion over Ti1-x-Ni2P was only 12% larger than that over Ni2P. Contrary to Ni2P, the high Q conversion (>96%) over Ti1-x-Ni2P was almost constant in the whole temperature range studied. Figure 7 illustrates the variation of the reactant and liquid product distributions in the HDN of Q with reaction temperature over the Ni2P and Ti1-x-Ni2P catalysts. Although Q is very reactive, the liquid product distributions over these catalysts were quite different. THQ1 was the major product in the HDN of quinoline over Ni2P (Figure 7a). Only small amounts of the other hydrogenated intermediates, THQ5 and DHQ (<5%), were detected. For Ti1-x-Ni2P, THQ1 was still the main hydrogenated intermediate, but its concentration decreased drastically. On the other hand, DHQ became the second most abundant hydrogenated intermediate and its concentration increased remarkably with increasing TiO2 content. Especially for Ti0.03-Ni2P (Figure 7d), DHQ became the main product at low temperature (300 °C). In the HDN of Q over Ni2P and Ti1-x-Ni2P, the concentrations of THQ1 and DHQ decreased with increasing temperature, except that a maximum of the concentration of THQ1 was observed at 320 °C for Ti0.1-Ni2P (Figure 7d). Moreover, it should be noted that the concentration of THQ5 also increased with increasing TiNi atomic ratio.

Besides the fully hydrogenated intermediate (DHQ), concentrations of the C–N bond cleavage products, propylcyclohexane (PCH) and propylenebenzene (PB), also increased with the increase in TiO2 content. Above 340 °C, PCH and PB became the dominant compounds, and represented 66% of the reaction products over Ti0.03-Ni2P (Figure 7c). Further increase in the Ti/Ni ratio led to a decrease in the C–N bond cleavage products. The variations of HDN TOF in the HDN of Q over Ni2P and Ti1-x-Ni2P with temperature are shown in Figure 8. The HDN TOF of each catalyst increased with temperature, suggesting that the C–N bond cleavage is a thermodynamically favorable reaction. The HDN TOF also increased in the order Ni2P < Ti0.1-Ni2P < Ti0.03-Ni2P < Ti0.01-Ni2P, indicating that the dehydrogenation activity of Ni2P was enhanced by the introduction of a small amount of TiO2.

3.3. HDN of DHQ. Figure 9 shows the variation of the reactant and liquid product distributions in the HDN of DHQ with reaction temperature over the Ni2P and Ti1-x-Ni2P catalysts. Ni2P exhibited a low dehydrogenation activity, no PB but only a small amount of PCH (<3%) was detected. The main products were the dehydrogenated N-containing molecules, i.e., THQ1, THQ5, and Q. At temperatures below 320 °C, THQ1 was the most abundant compound. With increasing temperature, the concentration of THQ5 increased drastically, and THQ5 became the dominant product above 320 °C. Ti1-x-Ni2P exhibited much higher C–N bond cleavage activity than Ni2P. The concentrations of PB and PCH, the C–N bond cleavage products, increased with increasing TiNi atomic ratio, and the formation of PCH was more enhanced by increasing the Ti content than that of PB. PCH became the most abundant product at Ti/Ni atomic ratios higher than 0.03. For Ti0.03-Ni2P, the yield of PCH reached 23% at 300 °C. THQ5 was the main dehydrogenated product over Ti1-x-Ni2P. No quinoline but only small amounts of THQ1 and OPA (both less than 3%) were detected. Among the Ti1-x-Ni2P catalysts, Ti0.01-Ni2P exhibited different catalytic behavior in DHQ dehydrogenation. The yield of THQ5 over Ti0.01-Ni2P was higher than that over Ti0.03-Ni2P and Ti0.1-Ni2P (Figure 9). Moreover, contrary to Ti0.03-Ni2P and Ti0.1-Ni2P, the concentration of THQ5 increased with temperature over Ti0.01-Ni2P. The results indicate that Ti0.01-Ni2P possessed higher dehydrogenation activity than Ti0.03-Ni2P and Ti0.1-Ni2P.

The variations of HDN TOF of Ni2P and Ti1-x-Ni2P in the HDN of DHQ with temperature are shown in Figure 10. The HDN TOF of each catalyst increased with temperature, which confirmed that the C–N bond cleavage is a thermodynamically favorable reaction. The HDN TOF increased in the order Ni2P < Ti0.01-Ni2P < Ti0.03-Ni2P < Ti0.1-Ni2P. Ni2P showed a much lower HDN TOF than Ti1-x-Ni2P. The value was almost one order of magnitude lower than those of Ti1-x-Ni2P.

4. Discussion

4.1. Characterization. Among the methods used for preparing transition metal phosphate hydrotreating catalysts, such as the solid-state reaction of metal elements and phosphorus, the electrolysis of fused salts and the phosphidation of metals or metal oxides with PH3/H2, the temperature-programmed reduction of metal phosphates by H2 is the most commonly used one. This simple method, which was described in the 19th century for the preparation of unsupported metal phosphides, was first used by Robinson et al. to prepare a phosphorus-promoted Ni/SiO2 catalyst and was developed further by Oyama et al. for metal phosphate hydrotreating catalysts. Generally, two steps are involved in the formation of transition metal phosphides with this method. One is the reduction of the transition metal oxide at the lower temperature region, whereas the other is the reduction of PO4 to elemental phosphorus and the formation of phosphate at higher temperature. According to Rodriguez et al., the reduction of PO4 is the final and determining step in the formation of transition metal phosphides. This reaction is thermodynamically unfavorable and kinetically slow because the P–O bond is strong, and its reduction requires very low heating rate and high temperature. As can be seen in the XRD patterns of Ni2P (Figure 1), there still remained a small amount of phosphate (Ni2P4O12), indicating that the reduction of PO4 was not fully accomplished after being reduced at 500 °C for 2 h. Addition of TiO2 seems to facilitate the formation of Ni2P, because peaks assigned to phosphate disappeared in the XRD patterns of Ti1-x-Ni2P.

The TPR profiles of Ni2P and Ti1-x-Ni2P precursors (Figure 2) showed that the low-temperature H2 consumption peak was more influenced by the introduction of TiO2 than the high-temperature peak. The increased reduction temperature of the low-temperature peak in the TPR profiles of Ti1-x-Ni2P implies that a strong interaction may exist between Ti and Ni species. According to
the relative surface Ti/Ni atomic ratios of the Ni₃P and Tiₓ-Ni₃P samples determined by XPS (Table 3), these Ti species were mainly located on the surface of Ni₃P. De Bokx et al.²⁹ studied the TPR of NiO supported on TiO₂. Two reduction peaks were observed for samples calcined above 300 °C. They attributed the low-temperature peak to the reduction of NiO and the high-temperature peak to the reduction of NiTiO₃, because NiTiO₃ is more difficult to reduce than NiO. According to them, NiO and TiO₂ interdiffused rapidly at calcination temperatures higher than 300 °C, and ultimately led to the formation of NiTiO₃. Damyanova et al.³⁰ also attributed the hydrogen consumption in the higher temperature region for NiO/TiO₂ to the reduction of octahedrally coordinated Ni²⁺ ions in a NiTiO₃-like structure. According to the TPR results and the distribution of Ti species determined by XPS, we assume that TiO₂ diffuses to the surface of the Tiₓ-Ni₃P precursors to form a NiTiO₃ shell upon calcination at 500 °C in the oxidic precursors, leading to the increase in the reduction temperature of the low-temperature peak. Once this surface NiTiO₃ shell is reduced, the reduction of bulk NiO in the Tiₓ-Ni₃P precursors is accelerated, because at that moment the temperature is higher than required for the reduction of NiO, i.e. the system was in a “superheated” situation for the reduction of NiO. This could be the reason that the low-temperature peak in the TPR profiles of Tiₓ-Ni₃P precursors became sharp and narrow. On the basis of the above discussion, the shoulder centered around 630 °C in the TPR profiles of Ti₀.₀₃-Ni₃P and Ti₀.₁-Ni₃P should be attributed to the reduction of NiO species. As shown in Table 3, the decreased rₓps/rₓn ratio indicates that surface segregation and growth of TiO₂ particles may take place with increasing Ti content, leaving part of the surface NiO species exposed to H₂ during reduction. Compared with the NiTiO₃ species, these NiO species are easier to reduce, and should be responsible for the appearance of the shoulder. On the other hand, the XRD (Figure 1 and Table 1) and XPS results suggested that following the formation of Ni₃P, the Ti-related species likely existed in the form of TiO₂ and reside on the surface of Ni₃P.

In the present study, the site densities of Ni₃P and Tiₓ-Ni₃P were measured by using CO chemisorption and the obtained CO uptakes were used as the basis to calculate the HDN TOF of the catalysts in HDN. The results (Table 3) indicate that the number of surface active sites was significantly affected by the addition of TiO₂. The increase in CO uptakes of the catalysts with higher Ti/Ni ratio can also be attributed to the decreased particle size (Figure 5).

The negative shift of binding energies of surface Ni²⁺ and P⁵⁺ species (Figure 4) suggests the existence of an electronic effect caused by the surface Ti species, which may result in the electron enrichment on the surface Ni and P species. No significant shift in binding energy peaks assigned to the reduced Ni and P species in Ni₃P was observed (Figure 4), suggesting that the addition of TiO₂ did not affect the electronic properties.
of bulk Ni$_2$P, probably because the TiO$_2$ species were mainly located on the surface of the catalysts.

In conventional supported MoS$_2$ catalysts, TiO$_2$ is considered to be an electronic promoter. Under HDS reaction conditions, a fraction of the Ti$^{4+}$ species present in the support can be partially reduced to Ti$^{3+}$ species. The 3d electron in Ti$^{3+}$ can be easily transferred through the conduction band of the support and injected into the Mo 3d conduction band, leading to weakening of the Mo-S bond and an increase in the number of S vacancies or coordinatively unsaturated sites. In the TPR profile of P-Ti (Figure 2), a broad peak with low intensity related to the partial reduction of TiO$_2$ to low-valence Ti species was observed, suggesting that TiO$_2$ on the surface of Ti$_x$-Ni$_2$P can also be partially reduced. These low-valence Ti species on the surface of Ni$_2$P may act as the electron donor, and thus transform the surface Ni and P species to an electron-rich state.

Two distinct NH$_3$ desorption peaks at 109 and 315 °C were observed in the NH$_3$-TPD profile of Ni$_2$P (Figure 3). This is in agreement with the results of Wang, who studied the temperature-programmed desorption of ethylamine over Ni$_2$P/SiO$_2$. The ethylamine-TPD profile was characterized by two desorption peaks with maxima at 107 and 361 °C, assigned to ethylamine desorption from physisorption sites and acid sites, respectively. Accordingly, the low-temperature peak and high-temperature peak in the NH$_3$-TPD profile of Ni$_2$P can be assigned to the desorptions of NH$_3$ from physisorption sites and acid sites of Ni$_2$P, respectively. The strength of the acid sites can be determined by the temperature at which the adsorbed NH$_3$ desorbs. On the basis of the desorption temperature, the acid sites are classified as weak (150–250 °C), medium (250–350 °C), or strong (350–450 °C). Therefore, it can be concluded from the NH$_3$-TPD result that Ni$_2$P possesses moderate acidity. Lee and Oyama also reported that Ni$_2$P/SiO$_2$ had moderate acidity in the form of PO-H sites. The high-temperature NH$_3$ desorption peak after addition of TiO$_2$ decreased markedly but was still located in the same temperature region. This observation suggested that the strength of acid sites of Ni$_2$P does not change by the addition of TiO$_2$ but the number of acid sites decreases drastically.

4.2. HDN

As shown in Scheme 1, the reaction network of quinoline HDN is complicated and consists of primary and secondary hydrogenation reactions, followed by C–N bond breaking reactions. Figure 7 shows that the hydrogenation activity of bulk Ni$_2$P was enhanced by the addition of TiO$_2$, because DHQ was the second most abundant hydrogenated intermediate during quinoline HDN over Ti$_x$-Ni$_2$P, indicating that further hydrogenation of THQ1 took place. Over the Ni$_2$P catalyst THQ1 did not react further, but only reacted back to quinoline at higher temperature, because equilibrium at high temperature is on the side of the aromatic molecule. This is the
reason for the decrease of the quinoline conversion over Ni$_2$P with temperature (Figure 6).

The enhanced hydrogenation activity of catalysts is often correlated with the enhanced acidity of the catalyst. Participation of Brønsted acidity in the hydrogenation is assumed in the heterolytic mechanism.35,36 A reverse spillover mechanism where a proton is spilt over to a hydrogenation site may accelerate the hydrogenation.37 In addition, strong adsorption of the aromatic ring on the acidic site next to the hydrogenation site may favor the hydrogenation.38 However, this may not be true in our case, because the NH$_3$-TPD results indicated that the number of acid sites of Ni$_2$P catalysts decreased with the addition of TiO$_2$. The other possibility is that TiO$_2$ and the partially reduced low-valence Ti species on the surface of Ti$_x$-Ni$_2$P play a role as a Lewis base, weakening the adsorption of dihydro-intermediates (1,4-dihydroquinoline, 1,2-dihydroquinoline, or 3,4-dihydroquinoline) formed in the reaction of quinoline to THQ1 and thus facilitating the hydrogenation of quinoline. Campanati et al.39 reported that the liquid phase hydrogenation of quinoline over Pd and Rh/Al$_2$O$_3$ catalysts under mild conditions was only partial and gave rise mainly to THQ1. The synthesis of the fully hydrogenated DHQ was not observed because of the irreversible adsorption of dihydro-intermediate(s) on the active sites. No modification was observed in this adsorption with increasing temperature and pressure or with the addition of a Bronsted acid or base. On the contrary, the addition of a strong and sterically hindered Lewis base allowed the partial formation of DHQ, hampering the irreversible adsorption of the dihydro-intermediate(s).

In catalytic HDN, it is generally accepted that nitrogen-containing molecules are adsorbed on the catalyst surface prior to reaction, and thus, the adsorptivities and adsorption configurations of the nitrogen-containing molecules affect their relative reactivities and the reaction pathways.40,41 Quinoline can adsorb on the Ni-edge of NiMoS with the molecular plane parallel to the Ni-edge plane via side-on adsorption, or with the molecular plane perpendicular to the Ni-edge plane as end-on adsorption. A recent first principle study of heavy oil organonitrogen adsorption on NiMoS showed that quinoline is preferably adsorbed on the Ni-edge surface through the lone pair electrons of the nitrogen atom, which leads to a more ready hydrogenation of the nitrogen ring.42 This is consistent with our observations that THQ1 was the major partially hydrogenated intermediate during quinoline HDN over Ni$_2$P and Ti$_x$-Ni$_2$P (Figure 7). Especially for Ni$_2$P, THQ1 was the most abundant compound and represented 71% of the reaction product at 360 °C. The concentration of THQ5, another partially hydrogenated intermediate, was only as low as 5.6% at 360 °C over Ni$_2$P, but it increased with increasing TiO$_2$ and reached 20% over Ti$_{0.1}$-Ni$_2$P at the same temperature, suggesting that the addition of TiO$_2$ facilitates the adsorption of quinoline with the side-on configuration.

The distribution of dehydrogenated products of DHQ HDN (Figure 9) indicates that the adsorption geometry of DHQ was also affected by the introduction of TiO$_2$ to Ni$_2$P. THQ1, THQ5, and quinoline were detected as the dehydrogenation products over Ni$_2$P. The concentration of THQ5 increased with temperature and became the main product above 320 °C, whereas THQ1 was the main dehydrogenation compound at low temperature (<320 °C). The formation of THQ1 was decreased by the addition of TiO$_2$. Only a small amount of THQ1 was detected in DHQ HDN over Ti$_x$-Ni$_2$P in the whole temperature range. The results suggest that adsorptions of DHQ with both the heterocyclic ring and the saturated carbon ring are possible over Ni$_2$P. Especially at temperatures lower than 320 °C, it seems that DHQ tended to adsorb through the saturated carbon ring, leading to a relatively high yield of THQ1 after the dehydrogenation. On the contrary, at high temperature DHQ may prefer to interact with the surface of Ti$_x$-Ni$_2$P through the heterocyclic ring, yielding mainly THQ5. The addition of TiO$_2$ favors the adsorption of DHQ through the N-containing ring, which can be one of the reasons for the enhanced HDN TOF of Ti$_{0.1}$-Ni$_2$P in the HDN of DHQ (Figure 10).

Figure 8 shows that the HDN TOF of Ni$_2$P in Q HDN was also improved by the addition of TiO$_2$. Among the catalysts, Ti$_{0.01}$-Ni$_2$P exhibited the highest HDN TOF. The enhanced HDN TOF can be the result of both the enhanced C–N cleavage activity as well as the hydrogenation activity of Ti$_x$-Ni$_2$P. Because the C–N bond breaking occurs via DHQ, it is reasonable that the concentration of hydrocarbons increases as the reaction of THQ1 to DHQ speeds up. Therefore, the HDN of DHQ was carried out to evaluate the denitrogenation performance of Ni$_2$P and Ti$_{x}$-Ni$_2$P. For Ni$_2$P, only a small amount of PCH, one of the denitrogenation products, was detected (Figure 9). Ti$_{0.1}$-Ni$_2$P showed a much higher HDN TOF than Ni$_2$P, indicating that the C–N bond cleavage activity of Ni$_2$P was substantially improved by the addition of TiO$_2$. Moreover, the product distributions of DHQ HDN indicated that Ni$_2$P and Ti$_{0.01}$-Ni$_2$P possessed higher dehydrogenation activity, which should be responsible for the lower HDN TOFs for DHQ HDN than for Q HDN.

The Q and DHQ HDN results indicated TiO$_2$ is a promising promoter for Ni$_2$P in quinoline HDN. Both the C–N bond cleavage activity as well as the hydrogenation activity of Ni$_2$P can be enhanced by the introduction of TiO$_2$. Besides the adsorption configurations of the reactants, the acidity and the surface electronic properties are also important factors affecting the C–N bond cleavage activities of the hydrotreating catalysts. In the reaction network of quinoline HDN (Scheme 1), there are two irreversible reactions linked to THQ1 and DHQ. These two reactions are the first steps of the denitrogenation, in which a C–N bond is cleaved to form an aromatic (OPA) or aliphatic amine (propylecyclohexylamine, PCHA). PCHA is easily transformed into hydrocarbons and ammonia. A high-performance HDN catalyst should have high activity in breaking the hydrogenated heterocyclic ring.

There is a wealth of literature dealing with C–N bond cleavage reactions, which has been reviewed by Prins40 and Oyama et al.43 Mechanisms widely used to describe the cleavage of the C–N bond are nucleophilic substitution (SN1, SN2), elimination (E1, E2), and metallacycle or metal alkyl formation pathways. The pathways involving reactions with metals (C–N oxidative addition and metal alkyl formation) require activation of the α-carbon to the nitrogen.44–46 These pathways likely occur with metallic catalysts such as Rh, Pd, or Ru but not with phosphide or sulfide catalysts.20

The molecules, the catalysts, and the reaction conditions all have been found to influence the mechanism.47 Hadjiloizou et al.48 proposed two mechanisms for piperidine ring opening: an E2 elimination and an SN2 substitution. Both an acidic function of the catalyst (to bind the amine part of the reactant) and a basic function (to abstract the β-hydrogen atom) are needed in the elimination reaction.40 Zhao et al.49–51 found that over a sulfided NiMo/y-Al$_2$O$_3$ catalyst, C–N bond cleavage of an alkylamine occurred exclusively by nucleophilic substitution by H$_2$S to form an alkanethiol. This substitution does not occur by a classic SN2 substitution, but by a sequence of reactions in which the amine first dehydrogenates to an intermediate
imine. Recently, Wang et al. studied the HDN of 2-methylpyridine and its intermediates, 2-methylpyrrole as well as tetrahydromethylpyridine, over a sulfided NiMo/γ-Al2O3 catalyst. They considered the denitrogenation of 2-methylpyrrole to take place via substitution of 2-methylpyrrole to aminohexanethiols through imine intermediates. A recent study on the HDN of 2-methylpyrrole over Ni2P/Al2O3 and a commercial NiMoS/Al2O3 indicated that the mechanism of HDN on nickel phosphate is very similar to that on sulfides. The reaction proceeded in both cases predominantly by a substitution mechanism, with a smaller contribution of an elimination mechanism. However, for the more sterically hindered 2,6-dimethylpyridine, the molecule reacted mainly by an E2 elimination process. Our NH3-TPD results ruled out relations between the HDN activities and the surface acidities of Ti-Ni2P, because the acidity of Ni2P decreased with the addition of TiO2. However, on the basis of XPS results, we cannot exclude the possibility that the increased electron density of surface Ni2P species induced by the introduction of TiO2 is responsible for the enhanced HDN activity of Ti-Ni2P, because the electron-rich Ni2P species are expected to enhance either the nucleophilic substitution or the abstraction of the β-hydrogen in the elimination reaction.

5. Conclusion

TiO2 is a promising promoter for Ni2P in Q and DHQ HDN, enhancing both the hydrogenation and C–N bond cleavage activities of Ni2P. Among the Ti-Ni2P catalysts, Ti0.01Ni2P showed the highest Q HDN TOF but a low DHQ HDN TOF due to its high dehydrogenation activity. Characterization results indicated that the addition of TiO2 facilitates the formation of Ni2P. The TiO2 species are mainly located separately on the surface of the catalyst and have strong interactions with surface Ni and P species. Both the reducibility of the precursors and the surface electronic properties of Ni2P catalysts were affected by the addition of TiO2. Ti-Ni2P showed higher CO uptakes and a lower number of acid sites than Ni2P. The product distributions suggested that the adsorption configurations of DHQ and Q were affected by the introduction of TiO2. DHQ may prefer to interact with the surface of Ti-Ni2P through the heterocyclic ring. The promoting effect of Ti, therefore, could be related to changes in the adsorption geometries of quinoline and DHQ, as well as the partially hydrogenated intermediates, and the electronic interactions between surface Ti and Ni2P species.

Acknowledgment. This research was financially supported by the Natural Science Foundation of China (20333030, 20503003), the Ministry of Education of China (2003041026), the NCET, and the “111” project. The authors are grateful to Prof. R. Prins for helpful discussion and Mr. X. Duan, Mr. Y. Teng, and Ms. X. Yang for assistance in the preparation of catalysts and some HDN experiments.

References and Notes

(3) Babich, I. V.; Mouljin, J. A. Fuel 2003, 8, 607.