JOUL, Volume 5

Supplemental Information

Modular Electrochemical Synthesis Using a Redox

Reservoir Paired with Independent Half-Reactions

Fengmei Wang, Wenjie Li, Rui Wang, Tianqi Guo, Hongyuan Sheng, Hui-Chun Fu, Shannon S. Stahl, and Song Jin

Supplemental Information

А C Е G aNiH NIH nm В Н D F Element Element Atomic ratio % Element Atomic ratio % Atomic ratio % Element Atomic ratio % С 28.05 С 39.52 С 33.21 С 31.63 38.09 34.88 Ν Ν Ν 35.50 Ν 36.99 0 9.73 0 0 12.22 14.76 0 15.96 Na 11.98 Na 8.39 Na 9.31 Na 9.24 Fe 3.34 Fe Fe 4.95 3.37 Fe 3 Ni 3.18 Ni 4.71 4.14 Ni 3.84 Ni

Supplemental Experimental Procedures

Figure S1. Characterization of the different sodium nickel hexacyanoferrate (NaNiHCF) samples.

(A, C, E, G) SEM images and the corresponding (B, D, F, H) EDS elemental analyses of various NaNiHCF-x (n_{Ni}: n_{cittate}

=1: x) samples. The size of the synthesized NaNiHCF crystals increased with the citrate ratio used in the synthesis.

Figure S2. Comparison of the PXRD patterns collected on various NaNiHCF-*x* samples with the standard pattern of cubic Prussian blue crystal (JCPDS No. 52-1907).

The obvious doublet diffraction peaks at (220), (420), (440) and (620) are observed for various NaNiHCF-*x* sample, indicating the rhombohedral structure of these samples.

Figure S3. Thermogravimetric analysis (TGA) of various NaNiHCF-x samples.

(A) NaNiHCF-1. (B) NaNiHCF-5. (C) NaNiHCF-10. (D) NaNiHCF-15. The TGA tests were carried out under N_2 atmosphere at a ramp rate of 10 °C/min. The water contents in these various samples can be calculated based on these TGA results, as labeled in each panel for the first weightloss step.

Table S1. Weight percentages of metal elements and water content in various NaNiHCF-x samples. These values were

 calculated from the ICP-OES and TGA results.

sample	Na	Ni	Fe	H ₂ O
NaNiHCF-1	22.78%	34.95%	24.67%	17.60%
NaNiHCF-5	27.19%	31.18%	27.69%	13.93%
NaNiHCF-10	25.60%	39.75%	24.25%	10.39%
NaNiHCF-15	24.65%	41.08%	23.21%	11.06%

Figure S4. XRD patterns of the NaNiHCF-10 RR electrode (with Ti current collector) at different state of the redox reservoir (SOR).

Before oxidation (0% SOR), the NaNiHCF-10 RR electrode had rhombohedral crystal structure. After this RR electrode was fully oxidized (100% SOR), its crystal phase changed to cubic. The peaks marked with "*" are attributed to the signal from the Ti current collector.

Figure S5. Stability measurements of various NaNiHCF-x electrodes.

Comparison of the cycling performance of various NaNiHCF-x electrodes in 1.7 M Na₂SO₄ electrolyte with a cycling rate of 100 mAg⁻¹. The capacity decay rates of these electrodes are summarized in Table S2 (also see **Table S2**).

Figure S6. Cycling performance of NaNiHCF-10 RR electrode.

Energy efficiency of NaNiHCF-10 electrode cycled in 1.7 M Na₂SO₄ electrolyte with a cycling rate of 100 mA g⁻¹.

Table S2. Comparison of the stability of various NaNiHCF-x electrodes under the same measurement conditions. At least

 3 electrodes were tested for each case to obtain average experimental values. Here, by tuning the ratio between Ni²⁺ and

 sodium citrate(1: x) during the co-precipitation synthesis, we can obtain the various NaNiHCF crystals accordingly.

Electrode	Current density (mA/g)	Capacity (mAh/g)	Electrolyte	Decay rate	
				%/day	%/cycle
NaNiHCF-1	100	55-65	1.7 M Na ₂ SO ₄	<0.60%	<0.03%
NaNiHCF-5	100	60-70	1.7 M Na ₂ SO ₄	<0.73%	<0.04%
NaNiHCF-10	100	65-70	1.7 M Na ₂ SO ₄	<0.55%	<0.04%
NaNiHCF-15	100	65-70	$1.7 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$	<0.92%	<0.05%

Figure S7. Electrochemical properties of the NaNiHCF-10 RR electrode tested at different current rates. Capability of the NaNiHCF-10 RR electrode cycled at various rates of 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 A g⁻¹ in 1.7 M Na₂SO₄ electrolyte. For each rate, 10 galvanostatic cycles were conducted with the same cut-off potentials of 0.2 and 1.0 V_{SHE} .

Figure S8. Electrochemical properties of three NaNiHCF-10 electrodes connected in parallel.

Specific capacity and Coulombic efficiency of three NaNiHCF-10 RR electrodes connected in parallel cycled at 100 mA g^{-1} from 0.2 to 1.0 V_{SHE} in 1.7 M Na₂SO₄ electrolyte for 120 cycles. Inset, the schematic illustration of the three RR electrodes (1×1 cm²) connected in parallel. The capacity decay rate of NaNiHCF-10 electrodes connected in parallel was 0.01%/cycle(0.18%/day).

Figure S9. Characterization of the commercial carbon felt (treated in air at 400 °C for 24 h) used as the working

electrode to produce H₂O₂ in 1.7 M Na₂SO₄ electrolyte.

- (A) Photograph of the carbon felt electrode $(2 \times 3 \text{ cm}^2)$.
- (B) SEM image of the carbon felt electrode under high magnification.

Figure S10. Comparison of the XPS spectra collected on the pristine and the treated carbon felt.

(A) O 1s. (B) C 1s spectra. Treating the carbon felt can introduce or increase some functional groups, such as C-O-H, C-O-C, which enhances its catalytic performance for oxygen reduction reaction¹.

Figure S11. Investigation of electrochemical H₂O₂ production in conventional divided cells in a neutral electrolyte (1.7 M Na₂SO₄).

(A) Cyclic voltammetry (CV) curve of the treated carbon felt electrode scanned at 10 mV s^{-1} for H_2O_2 production in 1.7 M

 $Na_2SO_4\ solution\ purged\ with\ O_2\ gas.$

(B) Fast preliminary detection of the H_2O_2 produced under chronoamperometry for 5 min at 0 V_{SHE} in 1.7 M Na₂SO₄ electrolyte using H_2O_2 testing strips.

Supplemental experimental procedures: detection of produced H₂O₂

The concentration of the electrochemically produced H_2O_2 in 1.7 MNa₂SO₄ electrolyte was determined by the ceric sulfate titration process based on the following reaction¹:

$$2Ce^{4+} + H_2O_2 \rightarrow 2Ce^{3+} + 2H^+ + O_2$$
 (S1)

The chromogenic reagent was prepared by dissolving $Ce(SO_4)_2$ (0.4 mM, Sigma Aldrich) in 0.5 M H₂SO₄. UV/Vis spectroscopy (Cary 50 SCAN) of the solutions was performed to determine the concentration of Ce^{4+} , which has an absorbance peak at 319 nm in contrast to the colorless Ce^{3+} . Thus, the reduction of Ce^{4+} to Ce^{3+} by H₂O₂ could lead to a decrease in the absorbance peak intensity (see Figure S12). Accordingly, the concentration of produced H₂O₂ (i.e., [H₂O₂]) can be calculated based on the following equations:^{1,2}

$$\frac{Abs_{before}}{[Ce_{before}^{4+}]} = \frac{Abs_{affer}}{[Ce_{affer}^{4+}]}$$
(S2)

$$[H_2 O_2] (mM) = \frac{V_{before} \times [Ce_{before}^{4+}] \cdot (V_{before} + \Delta V) \times [Ce_{after}^{4+}]}{\Delta V \times 2}$$
(S3)

where the $[Ce_{before}^{4+}]$, $[Ce_{after}^{4+}]$, V_{before} and ΔV are the concentration of Ce^{4+} ion before and after adding the H_2O_2 solution, the original volume of the 0.4 mM Ce⁴⁺ standard solution and the added H_2O_2 solution.

Figure S12. Ceric sulfate titration followed by UV-Vis spectroscopy for determining the concentration of the produced H₂O₂.

UV-vis spectra of 5 mL 0.4 mM Ce(SO₄)₂ solution before and after adding 1 mL 1.7 M Na₂SO₄ solution containing ~0.4 mM H₂O₂, which was produced on treated carbon felt electrode. The change of the peak intensity can be used to calculate the exact concentration of the produced H₂O₂.

Figure S13. Characterization of the DoSi wafer.

- (A) Photography (left) and schematic (right) of the DoSi wafer with a diameter of 10 cm.
- (B) SEM image of the edge of DoSi wafer showing boron doped diamond (BDD) film with the resistivity of <0.1 ohm-

cm on the p-type Si <100> (resistivity of 0.01-0.02 ohm-cm).

Figure S14. Fabrication procedure of the DoSi wafer electrode for persulfate production.

Step 1, the back side (i.e., bottom silicon side) of the cut DoSi wafer with desired size was cleaned using 24 w% hydrofluoric acid to remove the residual silicon oxide. Step 2-3, the back side of the DoSi wafer was contacted to a piece of Cu foil, which is fixed on a piece of glass, with Gallium-Indiumeutectic (Sigma Aldrich). Step 4-5, epoxy resin (Loctite, EA9460) was used to seal the contact area and cover the edge and back side of the DoSi wafer to expose only the diamond film. The epoxy resin was allowed to cure at room temperature. The copper foil current collector was then folded and inserted into a glass tube, which was also sealed by epoxy to prevent contact with electrolyte during operation.

Figure S15. Electrochemical measurement of the DoSi electrode in 1.7 M Na₂SO₄ electrolyte.

- (A) CV curves with and without iR correction.
- (B) The corresponding Tafel plot without iR correction of the DoSi electrode measured at a scan rate of 10 mVs⁻¹ in 1.7

M Na₂SO₄ electrolyte.

Supplemental experimental procedures: detection and determination of the concentration of S2O82-

The concentration of the electrochemically produced $S_2O_8^{2-}$ was detected with a spectrophotometric method based on iodometric titration.³ The calibration curves were first constructed by preparing a series of 40 mL standard solutions by mixing DI water, NaHCO₃ (0.2 g), KI (4 g) (\geq 99%, Sigma-Aldrich) and various volume of 0.02 mol/L sodium persulfate stock solution. The resulting solutions (40 mL) were well-mixed by hand shaking and allowed to equilibrate for 15 min. As shown in Figure S16, two corresponding calibration curves for standard Na₂S₂O₈ solutions with the concentration ranges of 0-0.04 mM and 0-0.006 mM were presented, respectively.

For the analysis of produced $S_2O_8^{2-}$, 400 µL of the solution withdrawn from the sample solution containing electrochemically generated persulfate was added into this 40 mL NaHCO₃/KI chromogenic solution for spectrophotometric measurement. Note that the volume changes in the measurement solutions were taken into account for calculating the product concentrations.

Figure S16. The iodometric persulfate method used to determine the concentration of $S_2O_8^{2-}$.

 $(A) \ Absorption \ spectra \ of \ iodometric \ solutions \ (KI + NaHCO_3 \ in \ DI \ water) \ containing \ different \ standard \ concentrations \ of \ Na_2S_2O_8 \ solution.$

 $(B-C)\ Calibration\ curves\ derived\ from\ the\ UV-V is\ absorbance\ at\ 352\ nm\ for\ standard\ Na_2S_2O_8\ solutions\ with\ concentration\ ranges\ of\ 0-0.04\ mM\ and\ 0-0.006\ mM,\ respectively.$

Section S3. NaNiHCFRR enabled ModES cycle for H₂O₂ and S₂O_{8²⁻} production

As shown in **Figure S17**, a heterogeneous redox reservoir (RR) electrode was swapped between $\text{Cell}_{H_2O_2}$ and $\text{Cell}_{S_2O_8^2}$. Before placing the RR electrode into the other cell, it was washed using 1.0 M Na₂SO₄ solution to avoid bringing contaminations of the H₂O₂ or Na₂S₂O₈ chemicals into the other cell. Besides the potential of the RR electrode (**Figure S19**) during the ModES cycles, the total capacity (oxidation/ reduction to 100%/ 0% SOR) of the RR electrode is also a key parameter to evaluate its stability during the synthesis of H₂O₂ and Na₂S₂O₈. Therefore, the full capacity of the RR electrode was measured by galvanostatic redox curves after it was used for an arbitrary number of ModES cycles (**Figure S21**). Compared with the initial capacity of 9.2 C, the full capacity of the RR electrode decreased to 8.3 C after 100 ModES cycles of H₂O₂ and Na₂S₂O₈ synthesis, corresponding to a decay rate of 0.09%/ cycle_{ModES}.

Figure S17. Step-wise illustration of the NaNiHCF RR enabled ModES in one cycle to separately produce H_2O_2 (step 1) and $Na_2S_2O_8$ (step 2) in different cells (Cell_{H_2O_2} and Cell_{$S_2O_8^2$}).

The corresponding crystal phase transitions of the NaNiHCF RR electrode are also presented.

Figure S18. Potential and voltage profiles during the co-production of H₂O₂ and Na₂S₂O₈ in heterogeneous RR enabled ModES system by operating the NaNiHCF-10 RR electrode within a SOR range of 25% to 75%.

(A) Potential of the RR electrode (Potential_{RR}) when coupled with the cathodic HPR at $-0.1 V_{SHE}$ (blue line, oxidation) and anodic PSR at $2.74 V_{SHE}$ (red line, reduction) over ten continuous cycles.

(B) The corresponding cell voltage (V_{cell, H_2O_2} and V_{cell, S_2O_8^2}) during the ten cycles.

Figure S19. Stability test of the NaNiHCF-10 RR electrode in the ModES system for continuous on-demand production of H₂O₂ and Na₂S₂O₈.

Potential of the RR electrode (Potential_{RR}) when coupled with the cathodic HPR at $-0.1 V_{SHE}$ (blue line, oxidation) and anodic PSR at 2.74 V_{SHE} (red line, reduction) over 100 continuous cycles. The RR electrode showed a very stable potential profile throughout the whole cycling test, indicating the robustness of the heterogeneous RR electrode during the modular production of H₂O₂ and Na₂S₂O₈.

Figure S20. The comparison of the PXRD patterns of the NaNiHCF-10 RR ($2 \times 2 \text{ cm}^2$ electrode, 36.5 mg mass loading) before and after continuous operation in the ModES system for the production of H₂O₂ and Na₂S₂O₈.

The RR electrode showed no obvious change in the crystal structure after long term operation. The peaks marked with "*" are attributed to the Ti mesh current collector.

Figure S21. The full capacity of the NaNiHCF-10 RR electrode ($2 \times 2 \text{ cm}^2$ electrode, 36.5 mg mass loading) used in the ModES system for the production of H₂O₂ and Na₂S₂O₈.

The decay rate of this RR was around 0.09% per cycle (i.e., 0.26% per hour) in ModES system.

Figure S22. The stability of a NaNiHCF-10 RR electrode (1×1 cm²) oxidized and reduced with a long storage period in between.

The RR electrode was first oxidized at 10 mA in 1.7 M Na₂SO₄, then rested for 3.5 h outside the solution, followed by being reduced in the same solution at the same current. There is no obvious decay in the capacity between the oxidation and reduction steps, both with a high CE of around 99%. This result suggests that the RR^{ox} electrode taken from $Cell_{H_2O_2}$ can be stored for a desired amount of time before being reduced (to form RR^{red}) in $Cell_{S_2O_8^2}$ -without capacity loss.

Figure S23. The relationship between the total capacity, as well as the corresponding concentration of produced chemicals, and the size and number of the NaNiHCF-10 RR electrode with the same thickness range.

(A) The relationship between the total capacity and the size of the RR electrode with the thickness of $100-130 \,\mu\text{m}$, showing the total capacity of the RR electrode increases linearly as the electrode area increases, accompanied with the increased concentration of produced H₂O₂ and S₂O₈²⁻.

(B) The total capacity and the corresponding concentrations of produced chemicals within one ModES cycle scale with the number of stacked RR electrodes with the same area and mass loading.

Figure S24. Electrochemical performance of NaNiHCF-10 reservoir in saturated NaCl electrolyte.

Cycling performance at 100 mA/g for 110 cycles and the corresponding Coulombic efficiency of NaNiHCF-10 reservoir from 0.2 V to 1.0 V (vs SHE) in the saturated NaCl electrolyte.

Supplemental experimental procedures: active chlorine detection.

To determine the FE for the active chlorine production reaction (ACR, Cl⁻-2e⁻ \rightarrow Cl₂; Cl₂ +H₂O \rightarrow HCl + HClO),^{4,5} the concentration of the active chlorine in the solution generated by chronoamperometry (CA) was first roughly detected using active chlorine strips (Hach 2745050 Free & Total Chlorine Test Strips, 0-10 mg/L, Inset of **Figure S25**A). The exact concentration was then further measured by the iodometric method.⁶ Specifically, the following steps were taken: 1) 5.0 mL of solution was withdrawn from the sample solution containing electrochemically generated active chlorine, 1.000 g KI (\geq 99%, Sigma-Aldrich) was first added and the solution pH was modified to ~3.7 with 10.0 mL acetate buffer solution. The color of the sample solution changed to yellow. 2) Then, the sample solution was titrated using 0.250 mM standard Na₂S₂O₃ solution until the yellow solution became colorless. 3) Add 1.0 mL 0.5 wt% starch solution as the indicator (the color of the sample solution became brownish red), then continuously titrate with 0.250 mM standard Na₂S₂O₃ solution until the produced active chlorine in the solution was calculated by recording the volume of the 0.250 mM standard Na₂S₂O₃ solution *via* the equation S4-S6.

$$Cl_2 + 2I^- \rightarrow I_2 + 2Cl^-$$
(S4)

$$HClO + 2 I^{-} \rightarrow I_{2} + Cl^{-} + OH^{-}$$
(S5)

$$2 \operatorname{Na}_2 S_2 O_3 + I_2 \twoheadrightarrow \operatorname{Na}_2 S_4 O_6 + 2 \operatorname{NaI}$$
(S6)

All sample solution analysis was conducted by taking 5 mL electrolytes containing active chlorine produced after CA processes. The FE for ACR is calculated using the following equation S7.

FE (%)=
$$\frac{Q \text{ for AC production}}{Q_{input}} \times 100 = \frac{[AC] \times V \times 2 \times 96485}{Q_{input}} \times 100$$
 (S7)

where V, [AC] and Q_{input} are the volume of the electrolyte, concentration of produced active chlorine and the input charge during the CA electrolysis processes, respectively.

Figure S25. Electrochemical active chlorine (AC) production in individual cells with separator.

(A) CV curve (without *iR* compensation) measured at a scan rate of 10 mV s^{-1} and the corresponding potential-dependent Faradaic efficiency of dimensionally stable anode (DSA) for producing active chlorine in saturated NaCl electrolyte. Inset, the active chlorine test strip detection of the produced active chlorine in saturated NaCl electrolyte.

(B) The chronoamperometry curves of DSA electrode at various potentials (V versus SHE) in saturated NaCl electrolyte with 4 C of input charge.

Figure S26. Step-wise illustration of the NaNiHCFRR enabled ModES process in one cycle to separately produce H_2O_2 (step 1 in Na₂SO₄ electrolyte) and active chlorine (AC) (step 2 in NaCl electrolyte) in different cells (Cell_{H₂O₂ and Cell_{AC}).}

Figure S27. Voltage profiles and the corresponding VE during the co-production of H₂O₂ and AC in heterogeneous RR enabled ModES system by operating the NaNiHCF-10 RR electrode within a SOR range of 25% to 75%.

(A) The cell voltage (V_{cell,\,H_2O_2} and ~V_{cell,\,AC}) profiles during the 10 ModES cycles.

(B) The corresponding average cell voltages (V_{cell}) of $Cell_{H_2O_2}$ and $Cell_{AC}$ in 10 representative cycles. The error bars shown are the range of the potential profiles of the whole cell. **c**. The corresponding VE of this ModES process for H₂O₂ and AC production.

SUPPLEMENTAL REFERENCES

- 1. Lu, Z. et al. (2018). High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. *Nat. Catal. 1*, 156-162.
- 2 Sheng, H. et al. (2019). Electrocatalytic Production of H_2O_2 by Selective Oxygen Reduction Using Earth-Abundant Cobalt Pyrite (CoS₂). *ACS Catal.* 9, 8433-8442.
- 3 Liang, C., Huang, C.-F., Mohanty, N. & Kurakalva, R. M. (2008). A rapid spectrophotometric determination of persulfate anion in ISCO. *Chemosphere* 73, 1540-1543,.
- 4 Zaviska, F., Drogui, P., Blais, J.-F. & Mercier, G. (2009). In situ active chlorine generation for the treatment of dye-containing effluents. *J. Appl. Electrochem.* 39, 2397-2408.
- 5 Matousek, R. (2014). Hypochlorite Synthesis Cells and Technology, Sea Water. Encyclopedia of Applied Electrochemistry Springer New York 1066-1070.
- 6 Baird R.B., Eaton A.D., Rice E.W. (editor) Standard methods for the examination of water and wastewater, 23rd Edition (2017).