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Fig. SI-1 Metal contamination verification. (a) J-T curves verify the self-improving behavior of GaN is 

independent of counter electrode; (b) XPS Pt 4f core level spectrum shows small amount of Pt transferred 

from Pt counter electrode to sample surface; (c) XPS Ir 4f core level spectrum shows no Ir contamination 

using IrOx as counter electrode; (d) XPS Ag 3d spectrum shows silver leakage and contaminates the sample 

surface when using Ag paste as conductive adhesive in electrode assembly. 

 

 

Fig. SI-2 PL of as-grown GaN quasi-epilayer on Si. 



3 
 

    

 

Fig. SI-3 (a) 10-hours CA testing under constant bias at -0.6 V vs RHE and the corresponding 

Faradaic efficiency also reveal a self-improvable nature of GaN as shown in Fig. 1b in the main 

text;  (b) Electrochemical impedance spectra (EIS) analysis of Si/GaN photocathode as function 

of CA testing time. The experiment data is plotted in discrete points and the calculated results are 

listed in Table-S2. Inset shows the equivalent circuit obtained from the fitting; (c) J-E curves of 

as-prepared Si/GaN photocathode, 4 hours CA tested Si/GaN photocathode, and Si/GaN 

photocathode with different Pt photodeposition duration under 1 sun illumination; (d) Gas product 

measured by gas chromatography (GC). 
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Fig. SI-4 Mott-Schottky curves for as-received Si/GaN photocathode and CA tested Si/GaN 

photocathode. The extrapolations of these curves show similar flat band potentials before and after 

the CA testing. 

 

 

Fig. SI-5 pc-AFM characterization on CA-0h and CA-10h surfaces. Left hand side shows the 

morphology of the (a) CA-0h sample and (c) CA-10h sample, the right-hand side shows the 

corresponding photocurrent mappings measured under illumination (b) CA-0h and (d) CA-10h 

samples. Line scans on each sample refer to the extracted profiles presented in Fig. 2. 
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Fig. SI-6 (a) and (b) show the morphology and dark current of CA-0h sample, respectively; (c) 

and (d) show the morphology and dark current of CA-10h sample. The dark current showed here 

is negligible when compared to the photocurrent in Fig. SI-2. 
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  Fig. SI-7 Additional STEM/EELS to verify the existing of oxynitride formation on the sidewall 

of GaN after PEC testing: (a) STEM image of as-prepared surface with insets (left to right) 

showing the EELS mappings of Ga L-edge, N K-edge and O K-edge; (b) STEM image of CA-10h 

surface with insets (left to right) showing the EELS mappings of Ga L-edge, N K-edge and O K-

edge; (c) HRTEM showing a thin amorphous layer of oxynitride on the sidewall of GaN grain 

while the main crystal structure of GaN still remains as wurtzite structure; (d) TEM image shows 

the interface of quasi-epilayer of GaN and Si substrate. 
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Fig. SI-8 Illustration of GaN wurtzite structure. (a) wurtzite lattice structure of GaN, with polar c-

plane on top and non-polar m- and a-planes on the side; (b) hexagonal schematic of GaN wurtzite 

structure; (c) assigning the crystal planes to the actual GaN grains, with top surface of the grains 

are c-plane, the sidewall of the grains are mixed of other planes; (d) HRTEM reveals the crystal 

structure of MBE-grown GaN used in this study. 

 



8 
 

  

 

Fig. SI-9 (a) Ga 2p, (b) N 1s and (c) VBM spectra of CA-0h, CA-1h, CA-4h and CA-10h samples. 

The Ga 2p and N 1s core level spectra as well as VBM show similar profile regardless of testing 

time, indicating that within the probing depth of the XPS, the material is still dominated by GaN. 
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Fig. SI-10 Schematic of DFT configurations for free energy calculation. (a) ideal m-plane GaN 

with a hydrogen atom bonding to a gallium atom; (b) ideal m-plane GaN with a hydrogen atom 

bonding to a nitrogen atom; (c) gallium oxynitride forming at m-plan GaN with a hydrogen atom 

bonding to a gallium atom that associated with oxygen; (d) gallium oxynitride forming at m-plan 

GaN with a hydrogen atom bonding to a gallium atom that associated with nitrogen; (e) gallium 

oxynitride forming at m-plan GaN with a hydrogen atom bonding to a nitrogen atom; (f) gallium 

oxynitride forming at m-plan GaN with a hydrogen atom bonding to an oxygen atom; (g) gallium 

oxynitride forming at m-plan GaN with a hydrogen atom bonding to a subsurface nitrogen atom. 

 

Table S-1 Comparison of up-to-date record efficiencies as well as the device stability of protected Si-

photocathodes 

Materials Electrolyte catalyst Stability Illumination 
Onset potential (vs 

RHE) 
Reference 

MoS2/MnO/n+ 

p Si 

photocathode 

0.5 M 

H2SO4 
MoS2 1440 h 1 sun 0.28 V Ref 1 

NiMo/NiSi/n+p 

Si MW 

photocathode 

1 M KOH Pt 288 h 1 sun 0.55 V Ref 2 

Pt 

(1nm)/TiO2/Ti/

n+-p Si 

photocathode 

0.5 M 

H2SO4 
Pt 300 h 1 sun 0.64 V Ref 3 
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Pt 

NPs/TiO2/Ti/n+

-p Si 

photocathode 

1 M HClO4 Pt 720 h 1 sun 0.35 V Ref 4 

Pt/n-GaN/n+p 

Si 

photocathode 

0.5 M 

H2SO4 
Pt 3000 h 1 sun 0.56 V Ref 5 

nano-MoS2 

layer on 

Al2O3/n+p-Si 

photocathode 

HClO4 MoS2 120 h 1 sun 0.4 V Ref 6  

TiO2/Pt/n+p-Si 

photocathode 
HClO4 Pt 168 h 1 sun 0.6 V Ref 7 

Pt (2nm)/SiHJ 1 M H2SO4 Pt 10 h 1 sun 0.64 V Ref 8 

Pt-Al2O3-

Nanoporous-

pSi 

0.5 M 

H2SO4 
Pt 12 h 1 sun 0.05 V Ref 9 

MoSe2/n+p Si 

(Textured) 
1 M HClO4 MoSe2 120 h 1 sun 0.4 V Ref 10 

n-GaN quasi-

epilayer/n+p Si 

photocathode 

0.5 M 

H2SO4 

No 

catalyst 
150 h 3.5 suns 

Initial: -0.46 V 

Self-improved: -0.08 

V 

This work 

 

 

Table S2: Change of onset potential (Eonset) at different time points 

 CA-0h CA-1h CA-2h CA-3h CA-4h CA-6h CA-8h CA-10h 

Eonset 

(mV) 
-460 -280 -270 -240 -170 -150 -120 -80 

 

Table S3: Resistance comparison of as-prepared, CA tested after 1hr, CA tested after 4hrs and CA tested 

for 10hrs samples 

 Rs Rct, bulk Rct, surface CPE surface CPE bulk 

CA-0h 10.24 16.67 611.5 1.53×10-6 1.33×10-6 

CA-1h 11.97 17.56 136.7 1.94×10-6 1.73×10-6 

CA-4h 17.42 15.32 109.2 2.41×10-6 6.90×10-7 

CA-10h 17.39 18.21 104.7 3.05×10-6 7.33×10-7 
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