pubs.acs.org/JACS

α -Amino Acids and Peptides as Bifunctional Reagents: Carbocarboxylation of Activated Alkenes via Recycling CO₂

Li-Li Liao, Guang-Mei Cao, Yuan-Xu Jiang, Xing-Hao Jin, Xin-Long Hu, Jason J. Chruma, Guo-Quan Sun, Yong-Yuan Gui, and Da-Gang Yu*

simultaneous utilization of both the alkyl and carboxyl components from carboxylic acids. Under this unique strategy, carboxylic acids act as bifunctional reagents in the redox-neutral carbocarboxylation of alkenes. Diverse, inexpensive, and readily available α -AAs take part in such difunctionalizations of activated alkenes via visiblelight photoredox catalysis, affording a variety of valuable but otherwise difficult to access γ -aminobutyric acid derivatives (GABAs). Additionally, a series of dipeptides and tripeptides also

participate in this photocatalytic carbocarboxylation. Although several challenges exist in this system due to the low concentration and quantitative amount of CO_2 , as well as unproductive side reactions such as hydrodecarboxylation of the carboxylic acids and hydroalkylation of the alkenes, excellent regioselectivity and moderate to high chemoselectivity are achieved. This process features low catalyst loading, mild reaction conditions, high step and atom economy, and good functional group tolerance, and it is readily scalable. The resulting products are subject to efficient derivations, and the overall process is amenable to applications in the latestage modification of complex compounds. Mechanistic studies indicate that a carbanion is generated catalytically and it acts as the key intermediate to react with CO_2 , which is also generated catalytically *in situ* and thus remains in low concentration. The overall transformation represents an efficient and sustainable system for organic synthesis, pharmaceutics, and biochemistry.

INTRODUCTION

Carbon-carbon bond formation plays a central role in organic synthesis. Toward this end, direct cross couplings of electrophiles and nucleophiles, as well as multicomponent couplings with unsaturated bonds, are highly attractive means to generate high-value-added products.¹ In addition to many moisture-unstable and expensive organometallic reagents, carboxylic acids act as user-friendly cross-coupling partners due to their abundance and stability.² In addition to wellstudied transition-metal-catalyzed decarboxylations of arenecarboxylic acids,³ radical-type decarboxylations of alkyl carboxylic acids have attracted significant attention.⁴ Notably, recent significant progress in photocatalysis has generated powerful tools to realize novel decarboxylation reactions^{4,5} of alkyl-⁶ and arenecarboxylic acids.⁷ Generally in such processes, stoichiometric carbon dioxide (CO_2) is released as a waste byproduct and is not reutilized in the transformations (Figure 1), which leads to lower atom economy and potential safety issues at large scales. If the released CO₂, which is an inexpensive, nontoxic, and recyclable one-carbon building block,⁸ could be reutilized to construct important carbonyl-containing compounds, it would represent

Figure 1. Strategy for carbocarboxylation of alkenes with α -AAs and peptides as bifunctional reagents. TM = transition metal. PC = photocatalyst. EWG = electron-withdrawing group.

a carbon-economical and sustainable process. Herein, we report a novel strategy for the carbocarboxylation of activated

Received: November 13, 2020 Published: February 9, 2021

alkenes by simultaneous utilization of both the alkyl and carboxyl components from carboxylic acids, including α -amino acids (α -AAs) and peptides. The CO₂, which is generated quantitatively *in situ* in low concentration, can be efficiently trapped by carbanion intermediates in this system, in sharp contrast to previous carboxylations with high pressure and/or high excesses of CO₂.

Amino acids (AAs), especially the readily available and inexpensive α -AAs, are important and common carboxylic acids that play a vital role in nature.⁹ Another important class of AAs, γ -aminobutyric acids (GABAs), are the major inhibitory neurotransmitters in the central nervous system of mammals.¹⁰ Structurally diverse GABAs show significant bioactivities, and variations of the scaffold exist widely in drugs and various receptor antagonists (Figure 2).¹¹ Despite

Figure 2. Selected molecules containing GABA motifs.

significant interest in their synthesis, GABAs are generally less accessible than α -AAs and their diversity is limited.^{12,13} Inspired by great progress on group-transfer radical addition (GTRA)¹⁴ and recent breakthroughs in radical-type difunctionalization of alkenes with bifunctional reagents,¹⁵ we wondered whether we could prepare GABAs by installing both α -amino alkyl and carboxyl groups from α -AAs across the double bonds of alkenes. We hypothesized that photocatalytic decarboxylation of α -AAs or peptides in the presence of base could take place to generate α -amino alkyl radicals, which could undergo addition to activated alkenes to give more stable carbon radicals. The subsequent reduction of such radicals to carbanions and the following attack on the in situ generated CO₂ would generate GABAs. If successful, this process would not only turn inexpensive α -AAs into valuable GABAs but also would represent the first application of α -AAs and peptides as bifunctional reagents in the difunctionalization of alkenes and avoid the need for an excess of CO2. However, our proposed strategy faced several challenges. First of all, there are only scarce examples of single-electron-transfer (SET) reduction of the newly generated carbon radicals in GTRA reactions,¹⁶ which typically undergo direct couplings or oxidation to carbon cations instead.¹⁴ Second, in comparison to common carboxylations with high pressure and/or high excesses of CO₂, it is challenging to realize efficient carboxylations via C-C bond formation with the (sub)stoichiometric amounts and low concentrations of CO₂ inherent to the proposed catalytic conditions.^{17,18} Moreover, the proposed nucleophilic carbanions also would be generated catalytically in low concentrations and they could undergo undesired side reactions, such as protonation, instead of the desired carboxylation. Finally, the products, such as GABAs, could participate in similar decarboxylative transformations, including protonation, radical

pubs.acs.org/JACS

oligmerization, and polymerization, thus lowering the efficiency of the desired carbocarboxylation reaction.

RESULTS AND DISCUSSION

Reaction Optimization. With such challenges in mind, we initiated our investigations with the reaction between 1,1-diphenylethylene 1a and *N*-Cbz-protected α -AA 2a under 1 atm of N₂ and 30 W blue LED irradiation at room temperature. After substantial optimizations (Table 1), we

Table 1. Screening of Reaction Conditions^a

Ph +	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Ph N + Cbz	
1a, 0.3 mmol	2a, 1.5 equiv	3aa	3aa'
		yield (%) ^b	
entry	variation from standard conditions	3aa	3aa'
1	none	96 (81)	(18)
2	4CzIPN as PC	34	40
3	Ir(ppy) ₂ (dtbbpy)·PF ₆ as PC	78	39
4	fac-Ir(ppy) ₃ as PC	nd	nd
5	LiF instead of CsF	nd	nd
6	KF instead of CsF	73	32
7	MeCN instead of DMA	13	37
8	CO_2 (1 atm) instead of N_2	(93)	7
9	w/o CsF	nd	nd
10	w/o light	nd	nd
11	w/o PC	nd	nd
12	w/o PC/light	nd	nd

^aStandard conditions: **1a** (0.3 mmol), **2a** (0.45 mmol), Ir[dF(CF₃)-(ppy)]₂(dtbby)·PF₆ (0.5 mol %), CsF (0.6 mmol), DMA (3 mL), N₂ atmosphere, 30 W blue LED, rt, 8 h. Abbreviations: LED, light-emitting diode; [dF(CF₃)ppy], 2-(2,4-difluorophenyl)-5-trifluorome-thylpyridine; ppy, 2-phenylpyridine; dtbbpy, 4,4'-di-*tert*-butyl-2,2'-bipyridine; Cbz, benzyloxycarbonyl; w/o, without; nd, not detected. ^bDetermined by UPLC with anisole as internal standard. The isolated yield is given in parentheses.

obtained the desired product 3aa in 81% isolated yield by using 0.5 mol % of $Ir[dF(CF_3)(ppy)]_2(dtbbpy) \cdot PF_6$ as the PC (Table 1, entry 1). Other PCs, including 2,4,5,6-tetra(9Hcarbazol-9-yl)isophthalonitrile (4CzIPN), Ir(ppy)₂(dtbbpy). PF_{6} and fac-Ir(ppy)₃, turned out to be less efficient (Table 1, entries 2-4). The screening of solvents indicated that N, Ndimethylacetamide (DMA) was more suitable than others (please see more details in Table S2 in the Supporting Information). In most cases, the hydroalkylation product 3aa' was the main byproduct with an 18% isolated yield under the optimized conditions (Table 1, entry 1). We also explored a range of bases, among which CsF proved to be the best choice (Table S4 in the Supporting Information). When the reaction was carried out in 1 atm of CO_2 , the isolated yield of 3aa was increased to 93%, indicating that decarboxylation was followed by refixation of CO₂ in the catalytic cycle. Control experiments demonstrated that neither 3aa nor 3aa' was detected in the absence of the PC, base, or visible light.

Substrate Scope and Synthetic Application. With the optimal reaction conditions identified, we first investigated the scope of carboxylic acids, including α -AAs, peptides, and other carboxylic acids. As revealed in Table 2, *N*-Cbz-protected proline (**3aa**) showed better reactivity in comparison to other derivatives, including *N*-Boc, *N*-Ac, and *N*-Me protection (**3ab**-ad) as well as the free amine (**3ae**).¹⁹ Notably, the

Table 2. Scope of α -Amino Acids, Peptides, and Other Carboxylic Acids as Bifunctional Reagents^a

^{*a*}Unless specified otherwise, the reaction conditions are as shown in Table 1, entry 1; isolated yields are provided. Ratios of diastereoisomers were determined by ¹H NMR or LC-MS analysis. For the lower yields sometimes observed, the hydroalkylation product was the main byproduct. Boc = *tert*-butoxycarbonyl. ^{*b*}CsF (0.9 mmol), 5 Å MS (200 mg). ^{*c*}Using 2d = *N*-Me-Pro-OH and MeI as methylation reagent; yield determined by ¹H NMR. ^{*d*}18 h. ^{*e*}Isolated yields for reactions using 2 (0.39 mmol) and Cs₂CO₃ (0.45 mmol) in DMF (2.5 mL). ^{*f*}Under 1 atm of CO₂. ^{*g*}Isolated yield of methyl ester using TMSCHN₂ as methylation reagent. ^{*h*}Workup with (1) TMSCHN₂, 0 °C and (2) trifluoroacetic acid, 0 °C. ^{*i*}0.2 mmol scale.

addition of 5 Å molecular sieves (MS) obviously increased the yield of 3ab to 82% by inhibiting the hydroalkylation. Moreover, this transformation was amenable to various α -AAs to give desired products 3af-am in moderate to excellent yields. When we tested the nonprotected pyroglutamic acid (H-Pyr-OH) as the starting material, the hydroalkylation product 3aj' was obtained as the major product under the standard conditions. However, the desired product 3aj could be obtained in 61% isolated yield under 1 atm of CO₂. When N-Boc-Phe-OH was employed in our reaction, the GABA 3ak or cyclization product 5-benzyl-3,3-diphenylpyrrolidin-2-one 3al could be obtained in moderate yields after methylation or methylation and acid-mediated deprotection/cyclization, respectively. This highlights the potential for the synthesis of cyclic peptides via three steps without isolating the intermediates. In addition to α -AAs, a series of dipeptides (3an-at) and tripeptides (3au,av) also worked well in this reaction to give the desired products in moderate to excellent yields, indicating a possible application in modifying Cterminal residues in natural peptides.²⁰ Notably, the α -AAs (3aj,ak,am) and peptides (3an,ao and 3aq-av) bearing

relatively acidic N–H bonds that might lead to protonation of the *in situ* generated carbanion intermediates were tolerated in this reaction, indicating the efficiency of carboxylation. Moreover, α -oxy alkyl carboxylic acids (**3aw**,**ax**), a keto acid, and pivalic acid (**3ay**) could also serve as bifunctional reagents in this transformation to give the desired products in 31–68% yields.

In order to demonstrate the generality of this strategy, we further turned our attention to the scope of the alkenes (Table 3). 1,1-Diarylethylenes bearing electron-donating groups (EDGs, e.g. 3ea-3ia) at the *para* position and electron-neutral groups showed better reactivity than those with strong EWGs (e.g., CO_2Me , CF_3), which were not tolerated in this system. However, strong EWGs (e.g., CO_2Me , CF_3) at the *meta* position were tolerated to give the corresponding products in moderate to good yields. In addition, the arylalkenes bearing both strong and weak EWGs (3ta-wa) were amenable to this system. This phenomenon might arise from the balance of a stereoelectronic effect at the benzylic position, allowing facile SET reduction of benzyl radicals to the benzylic carbanions and then nucleophilic attack to CO_2 with

pubs.acs.org/JACS

Article

Table 3. Scope of Activated Alkenes with 2a as the Bifunctional Reagent^a

^{*a*}Unless specified otherwise, the reaction conditions are as shown as Table 1, entry 1. Isolated yields are given. Ratios of diastereoisomers were determined by ¹H NMR or LC-MS analysis. For the cases with lower yields, hydroalkylation products 3' were the main byproducts. Nap = naphthyl. ^{*b*}CsF (0.9 mmol), 5 Å MS (200 mg). ^{*c*}CsF (0.9 mmol). ^{*d*}12 h. ^{*e*}4 h. ^{*f*}0.2 mmol scale. ^{*g*}1 (0.3 mmol), 2a (0.39 mmol), [Ir] (1 mol %), Cs₂CO₃ (0.45 mmol) in DMF (2.5 mL).

high reactivity. When a derivative of ketoprofen was subjected to this reaction, the product **3ma** was obtained in moderate

yield, providing a new method to synthesize ibuprofen analogues.

Although styrenes and other activated alkenes, such as acrylates, have been widely investigated as radical acceptors in visible-light-mediated decarboxylative hydroalkylations with α -AAs,²¹ we found that diverse acrylates also underwent selective GTRA in our case with CO₂ reutilization under slightly modified reaction conditions (Table 3). This unusual chemoselectivity is in contrast with previous reports,²¹ which might call attention to the possible but unpredicted reactions such as this CO₂ elimination-fixation reaction in the decarboxylative radical additions. As shown in Table 3, increasing the steric hindrance at the α -position of the *tert*-butyl acrylates decreased the isolated yields of the products (3ya-3aba). In addition to monosubstituted acrylates, an α,β -disubstituted variant (3ada) also worked in this reaction. A variety of acrylate esters of natural products, including isobornyl (3afa), menthol (3aga), cholesterol (3ala), and ergosterol (3ama), were suitable substrates in our system. Notably, the ergosterol analogue, which is known to easily transform to vitamin D₂ under light irradiation, survived the reaction conditions without appreciable photoisomerization.²² It merits mentioning that unconjugated alkenes (3ha, 3aka-ama) and alkynes (3ia, 3aja) as well as a 1,3-diene (3ama) were untouched when selective carboxylation occurred at the C=C bond of styrenes and acrylates. Moreover, a variety of functional groups, OMe (3ea,na), SMe (3ga), ester (3la,va, 3xa-3ama), carboxylic acid (3ma), furan (3qa), and nitrile (3ta), were all compatible with the reaction conditions and delivered the targeted GABAs in moderate to excellent yields. Additionally, alkenes bearing EDGs, which were not suitable substrates in previously reported dicarbofunctionalizations of styrenes with amines and CO₂,¹³ worked well in our system, thus indicating a higher functional group tolerance and more general substrate scope of this transformation. Moreover, other functionalized alkenes (e.g., **3ana-apa**) could also give the desired products, albeit in lower yields. All of these results demonstrate the potential of this method as an alternative to synthesize GABAs and as a valuable tool for the late-stage diversification of bioactive molecules with a GABA moiety.

In order to demonstrate the utility of this method, we tested the use of sunlight irradiation, gram-scale reaction conditions, and further product derivatizations (Scheme 1). First, we conducted the standard reaction under sunlight irradiation, resulting in a 56% yield of **3aa** along with 22% of **3aa'**. Then, to our delight, a gram-scale reaction with lower catalyst loading (0.1 mol %) worked smoothly to give **3aa** in 74% yield,

Scheme 1. Sunlight-Driven Reaction, Gram-Scale Reaction, and Product Derivatizations

(A) Sunlight-Driven Reaction^a

^a**1a** (0.3 mmol), **2a** (0.45 mmol), $Ir[dF(CF_3)(ppy)]_2(dtbby)\cdot PF_6$ (0.5 mol %), CsF (0.6 mmol), DMA (3.0 mL), N₂ atmosphere, natural sunlight irradiation, 30 °C ~ 35 °C, 8 h (10:00–18:00).

highlighting the potential utility of this method. With GABA **3aa** now available in gram quantities, we further synthesized product **4**, which represents the necine base component present in pyrrolizidine alkaloids, in 85% yield via smooth deprotection of the Cbz group, condensation, and reduction.²³ 4-Aminobutanol **5** could be generated in 52% yield by the reduction of **3aa** with borane. Moreover, the GABA **3aa** could be converted to the dipeptide **6** following standard peptide coupling protocols.

To gain further insight into the mechanistic nature of this transformation, we performed a series of control experiments (Scheme 2). A facile carbocarboxylation of 1a with $[^{13}C]$ -2b

Scheme 2. Control Experiments

gave [¹³C]-3ab with 92% ¹³C incorporation, providing strong evidence that the carboxyl group in the desired product 3ab came from the starting material 2b (Scheme 2A). When we tested the effect of 2,2,6,6-tetramethyl-1-piperdinyloxy (TEMPO) in our system, we found that the formation of both 3aa and 3aa' were significantly inhibited, and we detected the α -amino radical-TEMPO adduct 7 by HRMS, indicating that radicals might be involved (Scheme 2B). When D_2O was added in the reaction mixture, up to 93% deuterium incorporation at the benzylic position of 3aa' was observed (Scheme 2C). Furthermore, benzaldehydes could be applied as electrophiles under our standard conditions to deliver the desired products 8-10 in good yields (Scheme 2C). Both cases suggest the formation of a benzylic carbanion intermediate. Moreover, these results were consistent with the radical/polar crossover defluorinative alkylation of trifluoromethylalkenes 11 with 2a to form the *gem*-difluoroalkene 12 (Scheme 2D).²⁴ The possibility that 3aa' might be the intermediate to give the desired product 3aa was excluded, as no 3aa was observed when 3aa' was applied as the starting material under the standard conditions (Scheme 2E).

Since the visible-light-driven decarboxylation of phenylacetic acids has been reported by several groups,²⁵ we wondered whether our products were stable under the reaction conditions. In order to test this, we subjected **3aa** to the standard conditions and found that **3aa** underwent decarboxylation in the absence of **2a** to give **3aa'** in 41% isolated yield (Scheme 2F). This decarboxylation was significantly inhibited, however, in the presence of **2a** and only afforded **3aa'** in 3% yield along with up to 90% recovery of starting material (rsm) **3aa** (Scheme 2F), which might arise from a competitive decarboxylation. Kinetic experiments also confirmed the formation of **3aa** and decomposition of **3aa** to **3aa'** under the standard reaction conditions (Figure 3).

Figure 3. Kinetic experiments.

In order to explain the competitive decarboxylation, we further tested the Stern–Volmer analysis with 2a and 3aa in the presence of CsF. As shown in Figure 4, the luminescence of

Figure 4. Stern–Volmer analysis with 2a and 3aa in the presence or absence of CsF under N₂.

Ir[dF(CF₃)(ppy)]₂(dtbbpy)·PF₆ at $\lambda_{max} = 470$ nm was readily quenched by both **2a** and **3aa** in the presence of CsF (Figure 4). The quenching rate of **3aa** is much slower than that of **2a** in the presence of CsF, which might be the key factor for the more facile decarboxylation of **2a** over **3aa** under the reaction conditions. The poor quenching by either **2a** or **3aa** in the

absence of CsF indicated the important role of CsF as the base to deprotonate carboxylic acids to carboxylates, which then could readily undergo SET with the excited photocatalyst.

On the these mechanistic studies and previous investigations,^{26,27} we propose the mechanism as shown in Figure 5 for

Figure 5. Possible mechanism.

the transformation. With the reaction of **1a** and **2a** as an example, initial SET between the photoexcited $[Ir^{III}]$ and the carboxylate **2a**', formed *in situ* upon deprotonation of **2a** in the presence of a base, generates the α -amino radical **D** and CO₂. Radical addition of **D** to **1a** produces the more stable benzylic radical **E**, which undergoes SET reduction with the reduced $[Ir^{II}]$ photocatalyst to give the benzylic carbanion **F**. Further nucleophilic attack into the *in situ* generated CO₂ furnishes carboxylate **G**, which undergoes protonation during workup to afford the desired product **3aa**. Although the carboxylation of **F** is reversible, the irreversible decarboxylation of **2a**' and slower decarboxylation of **G** might explain this conversion.

CONCLUSION

In summary, we disclosed a novel strategy using carboxylic acids, including diverse α -amino acids, peptides, and alkyl carboxylic acids, as bifunctional reagents in the redox-neutral carbocarboxylation of activated alkenes via visible-light photoredox catalysis. In comparison with traditional carboxylations of alkenes under at least 1 atm of CO₂, this strategy resolves the challenge in carboxylation with *in situ* generated CO_{2} , which is released as the byproduct via catalytic decarboxylation and thus is in low concentration. By using this method, we could prepare a variety of valuable but difficult to access γ aminobutyric acids from inexpensive and readily available α amino acids with broad substrate scope. Moreover, this method makes it easy to modify residues in peptides and introduce a GABA functionality into complex molecules, including the terpenoids isobornyl, menthol, cholesterol, and ergosterol. Moreover, the reaction can be performed under sunlight irradiation, it is readily amenable to gram-scale production, and diverse product derivations are also realized. Mechanistic studies indicate that a benzylic carbanion is generated catalytically and acts as the key intermediate to react with the *in situ* generated CO_2 . Further application of this new strategy in other GTRA processes is underway in our laboratory.

ASSOCIATED CONTENT

③ Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c11896.

Detailed experimental procedures, spectral data, and analytical data (PDF)

AUTHOR INFORMATION

Corresponding Author

Da-Gang Yu – Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China; Beijing National Laboratory for Molecular Sciences, Beijing 100190, People's Republic of China; ◎ orcid.org/ 0000-0001-5888-1494; Email: dgyu@scu.edu.cn

Authors

- Li-Li Liao Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
- Guang-Mei Cao Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
- Yuan-Xu Jiang Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
- Xing-Hao Jin Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
- Xin-Long Hu Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
- Jason J. Chruma Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China; Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, United States; orcid.org/0000-0002-3669-4863
- **Guo-Quan Sun** Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
- Yong-Yuan Gui Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.0c11896

Notes

The authors declare the following competing financial interest(s): A Chinese Patent on this work has been applied with the number 202011267379.4.

pubs.acs.org/JACS

ACKNOWLEDGMENTS

This paper is dedicated to Prof. Ilhyong Ryu on the occasion of his 70th birthday. Financial support wasprovided by the National Natural Science Foundation of China (21822108, 21772129), the Fok Ying Tung Education Foundation (161013), Sichuan Science and Technology Program (20CXTD0112, 2020YFH0083, 2021YJ0405), and the Fundamental Research Funds for the Central Universities. We thank Prof. Ruben Martin (ICIQ) for helpful discussion and Xiaoyan Wang from the Analysi and Testing Center of Sichuan University for helping us perform NMR studies. We also thank the comprehensive training platform of the Specialized Laboratory in the College of Chemistry at Sichuan University for compound testing.

REFERENCES

(1) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize. *Angew. Chem., Int. Ed.* **2012**, *51*, 5062–5085.

(2) (a) Goossen, L. J.; Rodriguez, N.; Goossen, K. Carboxylic acids as substrates in homogeneous catalysis. *Angew. Chem., Int. Ed.* 2008, 47, 3100–3120. (b) Rodriguez, N.; Goossen, L. J. Decarboxylative coupling reactions: a modern strategy for C–C Bond formation. *Chem. Soc. Rev.* 2011, 40, 5030–5048. (c) Patra, T.; Maiti, D. Decarboxylation as the Key Step in C–C Bond-Forming Reactions. *Chem. - Eur. J.* 2017, 23, 7382–7401.

(3) (a) Miura, M.; Satoh, T. Transition-Metal-Catalyzed Regioselective Arylation and Vinylation of Carboxylic Acids. *Synthesis* 2010, 2010, 3395–3409. (b) Shang, R.; Liu, L. Transition metal-catalyzed decarboxylative cross-coupling reactions. *Sci. China: Chem.* 2011, *54*, 1670–1687. (c) Larrosa, I.; Cornella, J. Decarboxylative Carbon-Carbon Bond-Forming Transformations of (Hetero)aromatic Carboxylic Acids. *Synthesis* 2012, *44*, 653–676.

(4) Schwarz, J.; König, B. Decarboxylative reactions with and without light-a comparison. *Green Chem.* **2018**, *20*, 323–361.

(5) (a) Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Visible-Light-Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives. Angew. Chem., Int. Ed. 2015, 54, 15632–15641.
(b) Zhang, G.; Bian, C.; Lei, A. Advances in visible light-mediated oxidative coupling reactions. Chin. J. Catal. 2015, 36, 1428–1439.
(c) Guan, B.; Xu, X.; Wang, H.; Li, X. Progress on the Decarboxylation Coupling Reaction Mediated by Visible Light. Youji Huaxue 2016, 36, 1564–1571. (d) Yoshimi, Y. Photoinduced electron transfer-promoted decarboxylative radical reactions of aliphatic carboxylic acids by organic photoredox system. J. Photochem. Photobiol., A 2017, 342, 116–130. (e) Jin, Y.; Fu, H. Visible-Light Photoredox Decarboxylative Couplings. Asian J. Org. Chem. 2017, 6, 368–385.

(6) For selected examples, see: (a) Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. A room temperature decarboxylation/C-H functionalization cascade by visible-light photoredox catalysis. Chem. Commun. 2013, 49, 5672-5674. (b) Lang, S. B.; O'Nele, K. M.; Tunge, J. A. Decarboxylative Allylation of Amino Alkanoic Acids and Esters via Dual Catalysis. J. Am. Chem. Soc. 2014, 136, 13606-13609. (c) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Merging photoredox with nickel catalysis: Coupling of α -carboxyl sp³-carbons with aryl halides. Science 2014, 345, 437-440. (d) Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D. W. C. Carboxylic Acids as A Traceless Activation Group for Conjugate Additions: A Three-Step Synthesis of (±)-Pregabalin. J. Am. Chem. Soc. 2014, 136, 10886-10889. (e) Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Decarboxylative Alkynylation and Carbonylative Alkynylation of Carboxylic Acids Enabled by Visible-Light Photoredox Catalysis. Angew. Chem., Int. Ed. 2015, 54, 11196-11199. (f) Le Vaillant, F.; Courant, T.; Waser, J. Room-Temperature Decarboxylative Alkynylation of Carboxylic Acids Using

Photoredox Catalysis and EBX Reagents. Angew. Chem., Int. Ed. 2015, 54, 11200-11204. (g) Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Metallaphotoredox-catalysed sp3-sp3 crosscoupling of carboxylic acids with alkyl halides. Nature 2016, 536, 322–325. (h) Jiang, H.; Studer, A. Iminyl-Radicals by Oxidation of α -Imino-oxy Acids: Photoredox-Neutral Alkene Carboimination for the Synthesis of Pyrrolines. Angew. Chem., Int. Ed. 2017, 56, 12273-12276. (i) Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Photoinduced Remote Functionalization of Amides and Amines Using Electrophilic Nitrogen Radicals. Angew. Chem., Int. Ed. 2018, 57, 12945-12949. (j) Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 2019, 363, 1429-1434. (k) Bhattacherjee, A.; Sneha, M.; Lewis-Borrell, L.; Tau, O.; Clark, I. P.; Orr-Ewing, A. J. Picosecond to millisecond tracking of a photocatalytic decarboxylation reaction provides direct mechanistic insights. Nat. Commun. 2019, 10, 5152.

(7) (a) Candish, L.; Freitag, M.; Gensch, T.; Glorius, F. Mild visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals. *Chem. Sci.* **2017**, *8*, 3618–3622. (b) Candish, L.; Teders, M.; Glorius, F. Transition-Metal-Free, Visible-Light-Enabled Decarboxylative Borylation of Aryl N-Hydroxyphthalimide Esters. *J. Am. Chem. Soc.* **2017**, *139*, 7440–7443.

(8) (a) Aresta, M. Carbon Dioxide as Chemical Feedstock; Wiley-VCH: Weinheim, 2010. (b) Ackermann, L. Transition-Metal-Catalyzed Carboxylation of C-H Bonds. Angew. Chem., Int. Ed. 2011, 50, 3842-3844. (c) Huang, K.; Sun, C.-L.; Shi, Z.-J. Transitionmetal-catalyzed C-C Bond Formation through the Fixation of Carbon Dioxide. Chem. Soc. Rev. 2011, 40, 2435-2452. (d) He, M.; Sun, Y.; Han, B. Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling. Angew. Chem., Int. Ed. 2013, 52, 9620-9633. (e) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2015, 6, 5933. (f) Luo, J.; Larrosa, I. C-H Carboxylation of Aromatic Compounds through CO₂ Fixation. ChemSusChem 2017, 10, 3317-3332. (g) Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem. 2017, 19, 3707-3728. (h) Zhang, W.; Zhang, N.; Guo, C.; Lu, X. Recent Progress in the Cyclization Reactions Using Carbon Dioxide. Youji Huaxue 2017, 37, 1309-1321. (i) Tortajada, A.; Julia-Hernandez, F.; Borjesson, M.; Moragas, T.; Martin, R. Transition-Metal-Catalyzed Carboxylation Reactions with Carbon Dioxide. Angew. Chem., Int. Ed. 2018, 57, 15948-15982. (j) Yan, S.-S.; Fu, Q.; Liao, L.-L.; Sun, G.-Q.; Ye, J.-H.; Gong, L.; Bo-Xue, Y.-Z.; Yu, D.-G. Transition metal-catalyzed carboxylation of unsaturated substrates with CO2. Coord. Chem. Rev. 2018, 374, 439-463. (k) Zhao, Y.; Liu, Z. Recent Advances in Photocatalytic CO₂ Reduction Using Earth-Abundant Metal Complexes-Derived Photocatalysts. Chin. J. Chem. 2018, 36, 455-460. (1) Burkart, M. D.; Hazari, N.; Tway, C. L.; Zeitler, E. L. Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catal. 2019, 9, 7937-7956. (m) Wang, S.; Xi, C. Recent Advances in Nucleophile-Triggered CO2-incorporated Cyclization leading to Heterocycles. Chem. Soc. Rev. 2019, 48, 382-404. (n) Fujihara, T.; Tsuji, Y. Carboxylation Reactions Using Carbon Dioxide as the C1 Source via Catalytically Generated Allyl Metal Intermediates. Front. Chem. 2019, 7, 430. (o) Zhang, L.; Li, Z.; Takimoto, M.; Hou, Z. Carboxylation Reactions with Carbon Dioxide Using N-Heterocyclic Carbene-Copper Catalysts. Chem. Rec. 2020, 20, 494-512.

(9) (a) Wang, J.; Liu, X.; Feng, X. Asymmetric Strecker Reactions. Chem. Rev. **2011**, 111, 6947–6983. (b) Mita, T.; Sato, Y. Syntheses of α -Amino Acids by Using CO₂ as a C1 Source. Chem. - Asian J. **2019**, 14, 2038–2047. (c) Aguilar Troyano, F. J.; Merkens, K.; Anwar, K.; Gomez-Suarez, A. Radical-Based Synthesis and Modification of Amino Acids. Angew. Chem., Int. Ed. **2021**, 60, 1098–1115.

(10) (a) Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed.; Hardman, J. G., Limbird, L. E.; Goodman, G. A., Eds.; McGraw-Hill: New York, 2001; Section III. (b) Johnston, G. A. R. GABA_A receptor pharmacology. *Pharmacol. Ther.* **1996**, *69*,

173–198. (c) McGeer, P. L.; McGeer, E. G. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 4th ed.; Siegel, G. J., Agranoff, B., Albens, R. W., Molinoff, P., Eds.; Raven: New York, 1989.
(d) Chebib, M.; Johnston, G. A. R. GABA-Activated Ligand Gated Ion Channels: Medicinal Chemistry and Molecular Biology. J. Med. Chem. 2000, 43, 1427–1447.

(11) (a) Bowery, N. G.; Hill, D. R.; Hudson, A. L.; Doble, A.; Middlemiss, D. N.; Shaw, J.; Turnbull, M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. *Nature* **1980**, 283, 92–94. (b) Belliotti, T. R.; Capiris, T.; Ekhato, I. V.; Kinsora, J. J.; Field, M. J.; Heffner, T. G.; Meltzer, L. T.; Schwarz, J. B.; Taylor, C. P.; Thorpe, A. J.; Vartanian, M. G.; Wise, L. D.; Ti, Z.-S.; Weber, M. L.; Wustrow, D. J. Structure– Activity Relationships of Pregabalin and Analogues That Target the α_2 - δ Protein. J. Med. Chem. **2005**, 48, 2294–2307. (c) Zheng, S.; Chen, Z.; Hu, Y.; Xi, X.; Liao, Z.; Li, W.; Yuan, W. Selective 1,2-Arylaminoalkylation of Alkenes Enabled by Metallaphotoredox Catalysis. Angew. Chem., Int. Ed. **2020**, 59, 17910–17916 and references therein.

(12) (a) Ordóñez, M.; Cativiela, C.; Romero-Estudillo, I. An update on the stereoselective synthesis of γ -amino acids. Tetrahedron: Asymmetry 2016, 27, 999-1055 and references therein. For recent elegent examples: please see: (b) Gurak, J. A.; Yang, K. S.; Liu, Z.; Engle, K. M. Directed, Regiocontrolled Hydroamination of Unactivated Alkenes via Protodepalladation. J. Am. Chem. Soc. 2016, 138, 5805-5808. (c) Gómez, J. E.; Guo, W.; Gaspa, S.; Kleij, A. W. Copper-Catalyzed Synthesis of *γ*-Amino Acids Featuring Quaternary Stereocenters. Angew. Chem., Int. Ed. 2017, 56, 15035-15038. (d) Chen, X.-Y.; Xiong, J.-W.; Liu, Q.; Li, S.; Sheng, H.; von Essen, C.; Rissanen, K.; Enders, D. Control of N-Heterocyclic Carbene Catalyzed Reactions of Enals: Asymmetric Synthesis of Oxindole-y-Amino Acid Derivatives. Angew. Chem., Int. Ed. 2018, 57, 300-304. (e) Ma, J.; Lin, J.; Zhao, L.; Harms, K.; Marsch, M.; Xie, X.; Meggers, E. Synthesis of β -Substituted γ -Aminobutyric Acid Derivatives through Enantioselective Photoredox Catalysis. Angew. Chem., Int. Ed. 2018, 57, 11193-11197.

(13) Only scarce examples exist for the preparation of GABAs with the incorporation of both amino and carboxyl groups simultaneously to electron-poor styrenes; see: (a) Hou, J.; Ee, A.; Cao, H.; Ong, H.-W.; Xu, J.-H.; Wu, J. Visible-Light-Mediated Metal-Free Difunctionalization of Alkenes with CO₂ and Silanes or C(sp³)–H Alkanes. *Angew. Chem., Int. Ed.* **2018**, *57*, 17220–17224. (b) Zhang, B.; Yi, Y.; Wu, Z.-Q.; Chen, C.; Xi, C. Photoredox-catalyzed dicarbofunctionalization of styrenes with amines and CO₂: a convenient access to γ -amino acids. *Green Chem.* **2020**, *22*, 5961–5965.

(14) For reviews, see: (a) Zard, S. Z. On the Trail of Xanthates: Some New Chemistry from an Old Functional Group. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 672–685. (b) Zard, S. Z. The Genesis of the Reversible Radical Addition–Fragmentation–Transfer of Thiocarbonylthio Derivatives from the Barton–McCombie Deoxygenation: A Brief Account and Some Mechanistic Observations. *Aust. J. Chem.* **2006**, *59*, 663–668. (c) Courant, T.; Masson, G. Recent Progress in Visible-Light Photoredox-Catalyzed Intermolecular 1,2-Difunctionalization of Double Bonds via an ATRA-Type Mechanism. *J. Org. Chem.* **2016**, *81*, 6945–6952. (d) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? *Angew. Chem., Int. Ed.* **2018**, *57*, 10034–10072.

(15) (a) Bagal, D. B.; Kachkovskyi, G.; Knorn, M.; Rawner, T.; Bhanage, B. M.; Reiser, O. Trifluoromethylchlorosulfonylation of Alkenes: Evidence for an Inner-Sphere Mechanism by a Copper Phenanthroline Photoredox Catalyst. *Angew. Chem., Int. Ed.* **2015**, *54*, 6999–7002. (b) Monos, T. M.; McAtee, R. C.; Stephenson, C. R. J. Arylsulfonylacetamides as bifunctional reagents for alkene aminoarylation. *Science* **2018**, *361*, 1369–1373. (c) Zhang, Y.; Liu, H.; Tang, L.; Tang, H.-J.; Wang, L.; Zhu, C.; Feng, C. Intermolecular Carboamination of Unactivated Alkenes. *J. Am. Chem. Soc.* **2018**, *140*, 10695–10699. (d) Moon, Y.; Park, B.; Kim, I.; Kang, G.; Shin, S.; Kang, D.; Baik, M. H.; Hong, S. Visible light induced alkene aminopyridylation using *N*-aminopyridinium salts as bifunctional reagents. *Nat. Commun.* **2019**, *10*, 4117. (e) Mathi, G. R.; Jeong, Y.;

(16) Tanaka, S.; Nakayama, Y.; Konishi, Y.; Koike, T.; Akita, M. Fluoroalkanesulfinate Salts as Dual Fluoroalkyl and SO₂ Sources: Atom-Economical Fluoroalkyl-Sulfonylation of Alkenes and Alkynes by Photoredox Catalysis. *Org. Lett.* **2020**, *22*, 2801–2805.

(17) For the decarboxylation of carboxylic acids and subsequent *ipso* carboxylation under an atmosphere of labeled CO₂, see: (a) Kingston, C.; Wallace, M. A.; Allentoff, A. J.; deGruyter, J. N.; Chen, J. S.; Gong, S. X.; Bonacorsi, S., Jr.; Baran, P. S. Direct Carbon Isotope Exchange through Decarboxylative Carboxylation. *J. Am. Chem. Soc.* **2019**, *141*, 774–779. (b) Destro, G.; Loreau, O.; Marcon, E.; Taran, F.; Cantat, T.; Audisio, D. Dynamic Carbon Isotope Exchange of Pharmaceuticals with Labeled CO₂. *J. Am. Chem. Soc.* **2019**, *141*, 780–784. (c) Tortajada, A.; Duan, Y.; Sahoo, B.; Cong, F.; Toupalas, G.; Sallustrau, A.; Loreau, O.; Audisio, D.; Martin, R. Catalytic Decarboxylation/Carboxylation Platform for Accessing Isotopically Labeled Carboxylic Acids. *ACS Catal.* **2019**, *9*, 5897–5901. (d) Kong, D.; Moon, P. J.; Lui, E. K. J.; Bsharat, O.; Lundgren, R. J. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. *Science* **2020**, *369*, 557–561.

(18) Although there has been no report for reutilization of CO_2 via C-C bond formation, a few examples focusing on carbon-heteroatom bonds formation have been reported. For an elegant concept, see: (a) Yoshida, M.; Ihara, M. Novel methodologies for the synthesis of cyclic carbonates. Chem. - Eur. J. 2004, 10, 2886-2893. For examples, see: (b) Yoshida, M.; Ihara, M. Palladium-Catalyzed Domino Reaction of 4-Methoxycarbonyloxy-2-butyn-1-ols with Phenols: A Novel Synthetic Method for Cyclic Carbonates with Recycling of CO₂. Angew. Chem., Int. Ed. 2001, 40, 616-619. (c) Yoshida, M.; Fujita, M.; Ishii, T.; Ihara, M. A Novel Methodology for the Synthesis of Cyclic Carbonates Based on the Palladium-Catalyzed Cascade Reaction of 4-Methoxycarbonyloxy-2-butyn-1-ols with Phenols, Involving a Novel Carbon Dioxide Elimination-Fixation Process. J. Am. Chem. Soc. 2003, 125, 4874-4881. (d) Yoshida, M.; Komatsuzaki, Y.; Ihara, M. Synthesis of 5-Vinylideneoxazolidin2ones by DBU-Mediated CO2-Fixation Reaction of 4-(Benzylamino)-2-butynyl Carbonates and Benzoates. Org. Lett. 2008, 10, 2083-2086. (e) Feng, H.; Ermolat'ev, D. S.; Song, G.; Van der Eycken, E. V. Synthesis of Oxazolidin-2-ones via a Copper(I)-Catalyzed Tandem Decarboxylative/Carboxylative Cyclization of a Propiolic Acid, a Primary Amine and an Aldehyde. Adv. Synth. Catal. 2012, 354, 505-509. (f) Zheng, S. C.; Zhang, M.; Zhao, X. M. Enantioselective transformation of allyl carbonates into branched allyl carbamates by using amines and recycling CO2 under iridium catalysis. Chem. - Eur. J. 2014, 20, 7216-7221. (g) Cui, F.-H.; Su, S.-X.; Xu, Y.-l.; Liang, Y.; Wang, H.-s.; Pan, Y.-M. Capture of CO₂ in air for 4,5-disubstituted furan-2(5H)-ones. Org. Chem. Front. 2016, 3, 1304-1308.

(19) The desired product could be detected in a trace amount under 1 atm of CO_2 , which might arise from the protection of amine with CO_2 . For a related report, see: Ye, J.; Kalvet, I.; Schoenebeck, F.; Rovis, T. Direct α -alkylation of primary aliphatic amines enabled by CO_2 and electrostatics. *Nat. Chem.* **2018**, *10*, 1037–1041.

(20) Malins, L. R. Decarboxylative couplings as versatile tools for late-stage peptide modifications. *Pept. Sci.* **2018**, *110*, e24049.

(21) Rahman, M.; Mukherjee, A.; Kovalev, I. S.; Kopchuk, D. S.; Zyryanov, G. V.; Tsurkan, M. V.; Majee, A.; Ranu, B. C.; Charushin, V. N.; Chupakhin, O. N.; Santra, S. Recent Advances on Diverse Decarboxylative Reactions of Amino Acids. *Adv. Synth. Catal.* **2019**, *361*, 2161–2214.

(22) Chen, Y.; Lu, J.; Wang, F.; Tan, T. Optimization of Photoreaction for the Production of Vitamin D_2 . *Chem. Eng. Technol.* **2007**, *30*, 1495–1498.

(23) Despinoy, X. L. M.; McNab, H. Hydrogenation of pyrrolizin-3ones; new routes to pyrrolizidines. *Org. Biomol. Chem.* **2009**, *7*, 4502– 4511.

(24) (a) Phelan, J. P.; Lang, S. B.; Sim, J.; Berritt, S.; Peat, A. J.; Billings, K.; Fan, L.; Molander, G. A. Open-Air Alkylation Reactions in Photoredox-Catalyzed DNA-Encoded Library Synthesis. *J. Am. Chem. Soc.* **2019**, *141*, 3723–3732. (b) He, Y.; Anand, D.; Sun, Z.; Zhou, L. Visible-Light-Promoted Redox Neutral gamma, gamma-Difluoroallylation of Cycloketone Oxime Ethers with Trifluoromethyl Alkenes via C–C and C–F Bond Cleavage. *Org. Lett.* **2019**, *21*, 3769–3773. (c) Anand, D.; Sun, Z.; Zhou, L. Visible-Light-Mediated β -C–H gem-Difluoroallylation of Aldehydes and Cyclic Ketones through C–F Bond Cleavage of 1-Trifluoromethyl Alkenes. *Org. Lett.* **2020**, *22*, 2371–2375.

(25) (a) Reference 6b. (b) Zuo, Z.-W.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. Enantioselective Decarboxylative Arylation of α -Amino Acids via the Merger of Photoredox and Nickel Catalysis. J. Am. Chem. Soc. 2016, 138, 1832-1835. (c) Capaldo, L.; Buzzetti, L.; Merli, D.; Fagnoni, M.; Ravelli, D. Smooth Photocatalyzed Benzylation of Electrophilic Olefins via Decarboxylation of Arylacetic Acids. J. Org. Chem. 2016, 81, 7102-7109. (d) Moon, P. J.; Wei, Z.; Lundgren, R. J. Direct Catalytic Enantioselective Benzylation from Aryl Acetic Acids. J. Am. Chem. Soc. 2018, 140, 17418-17422. (e) Guo, J.; Wu, Q.-L.; Xie, Y.; Weng, J.; Lu, G. Visible-Light-Mediated Decarboxylative Benzylation of Imines with Arylacetic Acids. J. Org. Chem. 2018, 83, 12559-12567. (f) Donabauer, K.; Maity, M.; Berger, A. L.; Huff, G. S.; Crespia, S.; König, B. Photocatalytic Carbanion Generation-Benzylation of Aliphatic Aldehydes to Secondary Alcohols. Chem. Sci. 2019, 10, 5162-5166. (26) For reviews on visible-light-driven carboxylations with $\text{CO}_{2^{\prime}}$ see: (a) Hou, J.; Li, J.-S.; Wu, J. Recent Development of Light-Mediated Carboxylation Using CO₂ as the Feedstock. Asian J. Org. Chem. 2018, 7, 1439-1447. (b) Tan, F.; Yin, G. Homogeneous Light-Driven Catalytic Direct Carboxylation with CO₂. Chin. J. Chem. 2018, 36, 545-554. (c) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Photochemical and Electrochemical Carbon Dioxide Utilization with Organic Compounds. Chin. J. Chem. 2018, 36, 644-659. (d) Yeung, C. S. Photoredox Catalysis as a Strategy for CO₂ Incorporation: Direct Access to Carboxylic Acids from a Renewable Feedstock. Angew. Chem., Int. Ed. 2019, 58, 5492-5502. (e) Zhang, Z.; Gong, L.; Zhou, X.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Radical-Type Difunctionalization of Alkenes with CO2. Huaxue Xuebao 2019, 77, 783-793. (f) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. Visible Light-Driven Catalytic Reductive Carboxylation with CO₂. ACS Catal. 2020, 10, 10871-10885. (g) He, X.; Qiu, L.; Wang, W.; Chen, K.; He, L. Photocarboxylation with CO₂: an appealing and sustainable strategy for CO₂ fixation. Green Chem. 2020, 22, 7301-7320. (h) Pradhan, S.; Roy, S.; Sahoo, B.; Chatterjee, I. Utilization of CO₂ Feedstock for Organic Sythesis by Visible-Light Photoredox Catalysis. Chem. - Eur. J. 2021, 27, 2254-2269. (i) Fan, Z.; Zhang, Z.; Xi, C. Light-Mediated Carboxylation Using Carbon Dioxide. ChemSusChem 2020, 13, 6201-6218. (j) Cai, B.; Cheo, H. W.; Liu, T.; Wu, J. Light-Promoted Organic Transformations Utilizing Carbon-Based Gas Molecules as Feedstocks. Angew. Chem., Int. Ed. 2020, DOI: 10.1002/anie.202010710. (k) Zhang, G.; Cheng, Y.; Beller, M.; Chen, F. Direct Carboxylation with Carbon Dioxide via Cooperative Photoredox and Transition-Metal Dual Catalysis. Adv. Synth. Catal. 2021, DOI: 10.1002/ adsc.202001280.

(27) For selected examples of visible-light-driven carboxylations of *in situ* generated carbanions with CO₂, see: (a) Yatham, V. R.; Shen, Y.; Martin, R. Catalytic Intermolecular Dicarbofunctionalization of Styrenes with CO₂ and Radical Precursors. *Angew. Chem., Int. Ed.* **2017**, *56*, 10915–10919. (b) Reference 13. (c) Ju, T.; Fu, Q.; Ye, J.-H.; Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Tian, X.-Y.; Luo, S.-P.; Li, J.; Yu, D.-G. Selective and Catalytic Hydrocarboxylation of Enamides and Imines with CO₂ to Generate α,α -Disubstituted α -Amino Acids. *Angew. Chem., Int. Ed.* **2018**, *57*, 13897–13901. (d) Fan, X.; Gong, X.; Ma, M.; Wang, R.; Walsh, P. J. Visible light-promoted CO₂ fixation

with imines to synthesize diaryl α -amino acids. Nat. Commun. 2018, 9, 4936. (e) Meng, Q.-Y.; Schirmer, T. E.; Berger, A. L.; Donabauer, K.; König, B. Photocarboxylation of Benzylic C-H Bonds. J. Am. Chem. Soc. 2019, 141, 11393-11397. (f) Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Transition metal-free phosphonocarboxylation of alkenes with carbon dioxide via visible-light photoredox catalysis. Nat. Commun. 2019, 10, 3592. (g) Wang, S.; Cheng, B.-Y.; Sršen, M.; König, B. Umpolung Difunctionalization of Carbonyls via Visible-Light Photoredox Catalytic Radical-Carbanion Relay. J. Am. Chem. Soc. 2020, 142, 7524-7531. (h) Wang, H.; Gao, Y.; Zhou, C.; Li, G. Visible-Light-Driven Reductive Carboarylation of Styrenes with CO2 and Aryl Halides. J. Am. Chem. Soc. 2020, 142, 8122-8129. (i) Zhou, W.-J.; Wang, Z.-H.; Liao, L.-L.; Jiang, Y.-X.; Cao, K.-G.; Ju, T.; Li, Y.; Cao, G.-M.; Yu, D.-G. Reductive dearomative arylcarboxylation of indoles with CO2 via visible-light photoredox catalysis. Nat. Commun. 2020, 11, 3263. (j) Song, L.; Fu, D.-M.; Chen, L.; Jiang, Y.-X.; Ye, J.-H.; Zhu, L.; Lan, Y.; Fu, Q.; Yu, D.-G. Visible-Light Photoredox-Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO2. Angew. Chem., Int. Ed. 2020, 59, 21121-21128. (k) Jiang, Y.-X.; Chen, L.; Ran, C.-K.; Song, L.; Zhang, W.; Liao, L.-L.; Yu, D.-G. Visible-Light Photoredox-Catalyzed Ring-Opening Carboxylation of Cyclic Oxime Esters with CO₂. ChemSusChem 2020, 13, 6312-6317.