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ABSTRACT: Carboxylic acids, including amino acids (AAs), have
been widely used as reagents for decarboxylative couplings. In
contrast to previous decarboxylative couplings that release CO2 as
a waste byproduct, herein we report a novel strategy with
simultaneous utilization of both the alkyl and carboxyl components
from carboxylic acids. Under this unique strategy, carboxylic acids
act as bifunctional reagents in the redox-neutral carbocarboxylation
of alkenes. Diverse, inexpensive, and readily available α-AAs take
part in such difunctionalizations of activated alkenes via visible-
light photoredox catalysis, affording a variety of valuable but
otherwise difficult to access γ-aminobutyric acid derivatives
(GABAs). Additionally, a series of dipeptides and tripeptides also
participate in this photocatalytic carbocarboxylation. Although several challenges exist in this system due to the low concentration
and quantitative amount of CO2, as well as unproductive side reactions such as hydrodecarboxylation of the carboxylic acids and
hydroalkylation of the alkenes, excellent regioselectivity and moderate to high chemoselectivity are achieved. This process features
low catalyst loading, mild reaction conditions, high step and atom economy, and good functional group tolerance, and it is readily
scalable. The resulting products are subject to efficient derivations, and the overall process is amenable to applications in the late-
stage modification of complex compounds. Mechanistic studies indicate that a carbanion is generated catalytically and it acts as the
key intermediate to react with CO2, which is also generated catalytically in situ and thus remains in low concentration. The overall
transformation represents an efficient and sustainable system for organic synthesis, pharmaceutics, and biochemistry.

■ INTRODUCTION

Carbon−carbon bond formation plays a central role in organic
synthesis. Toward this end, direct cross couplings of
electrophiles and nucleophiles, as well as multicomponent
couplings with unsaturated bonds, are highly attractive means
to generate high-value-added products.1 In addition to many
moisture-unstable and expensive organometallic reagents,
carboxylic acids act as user-friendly cross-coupling partners
due to their abundance and stability.2 In addition to well-
studied transition-metal-catalyzed decarboxylations of arene-
carboxylic acids,3 radical-type decarboxylations of alkyl
carboxylic acids have attracted significant attention.4−7

Notably, recent significant progress in photocatalysis has
generated powerful tools to realize novel decarboxylation
reactions4,5 of alkyl-6 and arenecarboxylic acids.7 Generally in
such processes, stoichiometric carbon dioxide (CO2) is
released as a waste byproduct and is not reutilized in the
transformations (Figure 1), which leads to lower atom
economy and potential safety issues at large scales. If the
released CO2, which is an inexpensive, nontoxic, and recyclable
one-carbon building block,8 could be reutilized to construct
important carbonyl-containing compounds, it would represent

a carbon-economical and sustainable process. Herein, we
report a novel strategy for the carbocarboxylation of activated
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Figure 1. Strategy for carbocarboxylation of alkenes with α-AAs and
peptides as bifunctional reagents. TM = transition metal. PC =
photocatalyst. EWG = electron-withdrawing group.
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alkenes by simultaneous utilization of both the alkyl and
carboxyl components from carboxylic acids, including α-amino
acids (α-AAs) and peptides. The CO2, which is generated
quantitatively in situ in low concentration, can be efficiently
trapped by carbanion intermediates in this system, in sharp
contrast to previous carboxylations with high pressure and/or
high excesses of CO2.
Amino acids (AAs), especially the readily available and

inexpensive α-AAs, are important and common carboxylic
acids that play a vital role in nature.9 Another important class
of AAs, γ-aminobutyric acids (GABAs), are the major
inhibitory neurotransmitters in the central nervous system of
mammals.10 Structurally diverse GABAs show significant
bioactivities, and variations of the scaffold exist widely in
drugs and various receptor antagonists (Figure 2).11 Despite

significant interest in their synthesis, GABAs are generally less
accessible than α-AAs and their diversity is limited.12,13

Inspired by great progress on group-transfer radical addition
(GTRA)14 and recent breakthroughs in radical-type difunc-
tionalization of alkenes with bifunctional reagents,15 we
wondered whether we could prepare GABAs by installing
both α-amino alkyl and carboxyl groups from α-AAs across the
double bonds of alkenes. We hypothesized that photocatalytic
decarboxylation of α-AAs or peptides in the presence of base
could take place to generate α-amino alkyl radicals, which
could undergo addition to activated alkenes to give more stable
carbon radicals. The subsequent reduction of such radicals to
carbanions and the following attack on the in situ generated
CO2 would generate GABAs. If successful, this process would
not only turn inexpensive α-AAs into valuable GABAs but also
would represent the first application of α-AAs and peptides as
bifunctional reagents in the difunctionalization of alkenes and
avoid the need for an excess of CO2. However, our proposed
strategy faced several challenges. First of all, there are only
scarce examples of single-electron-transfer (SET) reduction of
the newly generated carbon radicals in GTRA reactions,16

which typically undergo direct couplings or oxidation to
carbon cations instead.14 Second, in comparison to common
carboxylations with high pressure and/or high excesses of CO2,
it is challenging to realize efficient carboxylations via C−C
bond formation with the (sub)stoichiometric amounts and low
concentrations of CO2 inherent to the proposed catalytic
conditions.17,18 Moreover, the proposed nucleophilic carban-
ions also would be generated catalytically in low concen-
trations and they could undergo undesired side reactions, such
as protonation, instead of the desired carboxylation. Finally,
the products, such as GABAs, could participate in similar
decarboxylative transformations, including protonation, radical

oligmerization, and polymerization, thus lowering the
efficiency of the desired carbocarboxylation reaction.

■ RESULTS AND DISCUSSION
Reaction Optimization.With such challenges in mind, we

initiated our investigations with the reaction between 1,1-
diphenylethylene 1a and N-Cbz-protected α-AA 2a under 1
atm of N2 and 30 W blue LED irradiation at room
temperature. After substantial optimizations (Table 1), we

obtained the desired product 3aa in 81% isolated yield by
using 0.5 mol % of Ir[dF(CF3)(ppy)]2(dtbbpy)·PF6 as the PC
(Table 1, entry 1). Other PCs, including 2,4,5,6-tetra(9H-
carbazol-9-yl)isophthalonitrile (4CzIPN), Ir(ppy)2(dtbbpy)·
PF6, and fac-Ir(ppy)3, turned out to be less efficient (Table
1, entries 2−4). The screening of solvents indicated that N, N-
dimethylacetamide (DMA) was more suitable than others
(please see more details in Table S2 in the Supporting
Information). In most cases, the hydroalkylation product 3aa′
was the main byproduct with an 18% isolated yield under the
optimized conditions (Table 1, entry 1). We also explored a
range of bases, among which CsF proved to be the best choice
(Table S4 in the Supporting Information). When the reaction
was carried out in 1 atm of CO2, the isolated yield of 3aa was
increased to 93%, indicating that decarboxylation was followed
by refixation of CO2 in the catalytic cycle. Control experiments
demonstrated that neither 3aa nor 3aa′ was detected in the
absence of the PC, base, or visible light.

Substrate Scope and Synthetic Application. With the
optimal reaction conditions identified, we first investigated the
scope of carboxylic acids, including α-AAs, peptides, and other
carboxylic acids. As revealed in Table 2, N-Cbz-protected
proline (3aa) showed better reactivity in comparison to other
derivatives, including N-Boc, N-Ac, and N-Me protection
(3ab−ad) as well as the free amine (3ae).19 Notably, the

Figure 2. Selected molecules containing GABA motifs.

Table 1. Screening of Reaction Conditionsa

yield (%)b

entry variation from standard conditions 3aa 3aa′
1 none 96 (81) (18)
2 4CzIPN as PC 34 40
3 Ir(ppy)2(dtbbpy)·PF6 as PC 78 39
4 fac-Ir(ppy)3 as PC nd nd
5 LiF instead of CsF nd nd
6 KF instead of CsF 73 32
7 MeCN instead of DMA 13 37
8 CO2 (1 atm) instead of N2 (93) 7
9 w/o CsF nd nd
10 w/o light nd nd
11 w/o PC nd nd
12 w/o PC/light nd nd

aStandard conditions: 1a (0.3 mmol), 2a (0.45 mmol), Ir[dF(CF3)-
(ppy)]2(dtbbpy)·PF6 (0.5 mol %), CsF (0.6 mmol), DMA (3 mL),
N2 atmosphere, 30 W blue LED, rt, 8 h. Abbreviations: LED, light-
emitting diode; [dF(CF3)ppy], 2-(2,4-difluorophenyl)-5-trifluorome-
thylpyridine; ppy, 2-phenylpyridine; dtbbpy, 4,4′-di-tert-butyl-2,2′-
bipyridine; Cbz, benzyloxycarbonyl; w/o, without; nd, not detected.
bDetermined by UPLC with anisole as internal standard. The isolated
yield is given in parentheses.
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addition of 5 Å molecular sieves (MS) obviously increased the
yield of 3ab to 82% by inhibiting the hydroalkylation.
Moreover, this transformation was amenable to various α-
AAs to give desired products 3af−am in moderate to excellent
yields. When we tested the nonprotected pyroglutamic acid
(H-Pyr-OH) as the starting material, the hydroalkylation
product 3aj′ was obtained as the major product under the
standard conditions. However, the desired product 3aj could
be obtained in 61% isolated yield under 1 atm of CO2. When
N-Boc-Phe-OH was employed in our reaction, the GABA 3ak
or cyclization product 5-benzyl-3,3-diphenylpyrrolidin-2-one
3al could be obtained in moderate yields after methylation or
methylation and acid-mediated deprotection/cyclization, re-
spectively. This highlights the potential for the synthesis of
cyclic peptides via three steps without isolating the
intermediates. In addition to α-AAs, a series of dipeptides
(3an−at) and tripeptides (3au,av) also worked well in this
reaction to give the desired products in moderate to excellent
yields, indicating a possible application in modifying C-
terminal residues in natural peptides.20 Notably, the α-AAs
(3aj,ak,am) and peptides (3an,ao and 3aq−av) bearing

relatively acidic N−H bonds that might lead to protonation
of the in situ generated carbanion intermediates were tolerated
in this reaction, indicating the efficiency of carboxylation.
Moreover, α-oxy alkyl carboxylic acids (3aw,ax), a keto acid,
and pivalic acid (3ay) could also serve as bifunctional reagents
in this transformation to give the desired products in 31−68%
yields.
In order to demonstrate the generality of this strategy, we

further turned our attention to the scope of the alkenes (Table
3). 1,1-Diarylethylenes bearing electron-donating groups
(EDGs, e.g. 3ea−3ia) at the para position and electron-
neutral groups showed better reactivity than those with strong
EWGs (e.g., CO2Me, CF3), which were not tolerated in this
system. However, strong EWGs (e.g., CO2Me, CF3) at the
meta position were tolerated to give the corresponding
products in moderate to good yields. In addition, the
arylalkenes bearing both strong and weak EWGs (3ta−wa)
were amenable to this system. This phenomenon might arise
from the balance of a stereoelectronic effect at the benzylic
position, allowing facile SET reduction of benzyl radicals to the
benzylic carbanions and then nucleophilic attack to CO2 with

Table 2. Scope of α-Amino Acids, Peptides, and Other Carboxylic Acids as Bifunctional Reagentsa

aUnless specified otherwise, the reaction conditions are as shown in Table 1, entry 1; isolated yields are provided. Ratios of diastereoisomers were
determined by 1H NMR or LC-MS analysis. For the lower yields sometimes observed, the hydroalkylation product was the main byproduct. Boc =
tert-butoxycarbonyl. bCsF (0.9 mmol), 5 Å MS (200 mg). cUsing 2d = N-Me-Pro-OH and MeI as methylation reagent; yield determined by 1H
NMR. d18 h. eIsolated yields for reactions using 2 (0.39 mmol) and Cs2CO3 (0.45 mmol) in DMF (2.5 mL). fUnder 1 atm of CO2.

gIsolated yield
of methyl ester using TMSCHN2 as methylation reagent. hWorkup with (1) TMSCHN2, 0 °C and (2) trifluoroacetic acid, 0 °C. i0.2 mmol scale.
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high reactivity. When a derivative of ketoprofen was subjected
to this reaction, the product 3ma was obtained in moderate

yield, providing a new method to synthesize ibuprofen
analogues.

Table 3. Scope of Activated Alkenes with 2a as the Bifunctional Reagenta

aUnless specified otherwise, the reaction conditions are as shown as Table 1, entry 1. Isolated yields are given. Ratios of diastereoisomers were
determined by 1H NMR or LC-MS analysis. For the cases with lower yields, hydroalkylation products 3′ were the main byproducts. Nap =
naphthyl. bCsF (0.9 mmol), 5 Å MS (200 mg). cCsF (0.9 mmol). d12 h. e4 h. f0.2 mmol scale. g1 (0.3 mmol), 2a (0.39 mmol), [Ir] (1 mol %),
Cs2CO3 (0.45 mmol) in DMF (2.5 mL).
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Although styrenes and other activated alkenes, such as
acrylates, have been widely investigated as radical acceptors in
visible-light-mediated decarboxylative hydroalkylations with α-
AAs,21 we found that diverse acrylates also underwent selective
GTRA in our case with CO2 reutilization under slightly
modified reaction conditions (Table 3). This unusual chemo-
selectivity is in contrast with previous reports,21 which might
call attention to the possible but unpredicted reactions such as
this CO2 elimination−fixation reaction in the decarboxylative
radical additions. As shown in Table 3, increasing the steric
hindrance at the α-position of the tert-butyl acrylates decreased
the isolated yields of the products (3ya−3aba). In addition to
monosubstituted acrylates, an α,β-disubstituted variant (3ada)
also worked in this reaction. A variety of acrylate esters of
natural products, including isobornyl (3afa), menthol (3aga),
cholesterol (3ala), and ergosterol (3ama), were suitable
substrates in our system. Notably, the ergosterol analogue,
which is known to easily transform to vitamin D2 under light
irradiation, survived the reaction conditions without appreci-
able photoisomerization.22 It merits mentioning that uncon-
jugated alkenes (3ha, 3aka−ama) and alkynes (3ia, 3aja) as
well as a 1,3-diene (3ama) were untouched when selective
carboxylation occurred at the CC bond of styrenes and
acrylates. Moreover, a variety of functional groups, OMe
(3ea,na), SMe (3ga), ester (3la,va, 3xa−3ama), carboxylic
acid (3ma), furan (3qa), and nitrile (3ta), were all compatible
with the reaction conditions and delivered the targeted GABAs
in moderate to excellent yields. Additionally, alkenes bearing
EDGs, which were not suitable substrates in previously
reported dicarbofunctionalizations of styrenes with amines
and CO2,

13 worked well in our system, thus indicating a higher
functional group tolerance and more general substrate scope of
this transformation. Moreover, other functionalized alkenes
(e.g., 3ana−apa) could also give the desired products, albeit in
lower yields. All of these results demonstrate the potential of
this method as an alternative to synthesize GABAs and as a
valuable tool for the late-stage diversification of bioactive
molecules with a GABA moiety.
In order to demonstrate the utility of this method, we tested

the use of sunlight irradiation, gram-scale reaction conditions,
and further product derivatizations (Scheme 1). First, we
conducted the standard reaction under sunlight irradiation,
resulting in a 56% yield of 3aa along with 22% of 3aa′. Then,
to our delight, a gram-scale reaction with lower catalyst loading
(0.1 mol %) worked smoothly to give 3aa in 74% yield,

highlighting the potential utility of this method. With GABA
3aa now available in gram quantities, we further synthesized
product 4, which represents the necine base component
present in pyrrolizidine alkaloids, in 85% yield via smooth
deprotection of the Cbz group, condensation, and reduction.23

4-Aminobutanol 5 could be generated in 52% yield by the
reduction of 3aa with borane. Moreover, the GABA 3aa could
be converted to the dipeptide 6 following standard peptide
coupling protocols.
To gain further insight into the mechanistic nature of this

transformation, we performed a series of control experiments
(Scheme 2). A facile carbocarboxylation of 1a with [13C]-2b

gave [13C]-3ab with 92% 13C incorporation, providing strong
evidence that the carboxyl group in the desired product 3ab
came from the starting material 2b (Scheme 2A). When we
tested the effect of 2,2,6,6-tetramethyl-1-piperdinyloxy
(TEMPO) in our system, we found that the formation of
both 3aa and 3aa′ were significantly inhibited, and we detected
the α-amino radical−TEMPO adduct 7 by HRMS, indicating
that radicals might be involved (Scheme 2B). When D2O was
added in the reaction mixture, up to 93% deuterium
incorporation at the benzylic position of 3aa′ was observed
(Scheme 2C). Furthermore, benzaldehydes could be applied as
electrophiles under our standard conditions to deliver the
desired products 8−10 in good yields (Scheme 2C). Both
cases suggest the formation of a benzylic carbanion
intermediate. Moreover, these results were consistent with
the radical/polar crossover defluorinative alkylation of

Scheme 1. Sunlight-Driven Reaction, Gram-Scale Reaction,
and Product Derivatizations

a1a (0.3 mmol), 2a (0.45 mmol), Ir[dF(CF3)(ppy)]2(dtbbpy)·PF6
(0.5 mol %), CsF (0.6 mmol), DMA (3.0 mL), N2 atmosphere,
natural sunlight irradiation, 30 °C ∼ 35 °C, 8 h (10:00−18:00).

Scheme 2. Control Experiments
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trifluoromethylalkenes 11 with 2a to form the gem-difluor-
oalkene 12 (Scheme 2D).24 The possibility that 3aa′ might be
the intermediate to give the desired product 3aa was excluded,
as no 3aa was observed when 3aa′ was applied as the starting
material under the standard conditions (Scheme 2E).
Since the visible-light-driven decarboxylation of phenylacetic

acids has been reported by several groups,25 we wondered
whether our products were stable under the reaction
conditions. In order to test this, we subjected 3aa to the
standard conditions and found that 3aa underwent decarbox-
ylation in the absence of 2a to give 3aa′ in 41% isolated yield
(Scheme 2F). This decarboxylation was significantly inhibited,
however, in the presence of 2a and only afforded 3aa′ in 3%
yield along with up to 90% recovery of starting material (rsm)
3aa (Scheme 2F), which might arise from a competitive
decarboxylation. Kinetic experiments also confirmed the
formation of 3aa and decomposition of 3aa to 3aa′ under
the standard reaction conditions (Figure 3).

In order to explain the competitive decarboxylation, we
further tested the Stern−Volmer analysis with 2a and 3aa in
the presence of CsF. As shown in Figure 4, the luminescence of

Ir[dF(CF3)(ppy)]2(dtbbpy)·PF6 at λmax = 470 nm was readily
quenched by both 2a and 3aa in the presence of CsF (Figure
4). The quenching rate of 3aa is much slower than that of 2a in
the presence of CsF, which might be the key factor for the
more facile decarboxylation of 2a over 3aa under the reaction
conditions. The poor quenching by either 2a or 3aa in the

absence of CsF indicated the important role of CsF as the base
to deprotonate carboxylic acids to carboxylates, which then
could readily undergo SET with the excited photocatalyst.
On the these mechanistic studies and previous investiga-

tions,26,27 we propose the mechanism as shown in Figure 5 for

the transformation. With the reaction of 1a and 2a as an
example, initial SET between the photoexcited [IrIII] and the
carboxylate 2a′, formed in situ upon deprotonation of 2a in the
presence of a base, generates the α-amino radical D and CO2.
Radical addition of D to 1a produces the more stable benzylic
radical E, which undergoes SET reduction with the reduced
[IrII] photocatalyst to give the benzylic carbanion F. Further
nucleophilic attack into the in situ generated CO2 furnishes
carboxylate G, which undergoes protonation during workup to
afford the desired product 3aa. Although the carboxylation of F
is reversible, the irreversible decarboxylation of 2a’ and slower
decarboxylation of G might explain this conversion.

■ CONCLUSION

In summary, we disclosed a novel strategy using carboxylic
acids, including diverse α-amino acids, peptides, and alkyl
carboxylic acids, as bifunctional reagents in the redox-neutral
carbocarboxylation of activated alkenes via visible-light photo-
redox catalysis. In comparison with traditional carboxylations
of alkenes under at least 1 atm of CO2, this strategy resolves
the challenge in carboxylation with in situ generated CO2,
which is released as the byproduct via catalytic decarboxylation
and thus is in low concentration. By using this method, we
could prepare a variety of valuable but difficult to access γ-
aminobutyric acids from inexpensive and readily available α-
amino acids with broad substrate scope. Moreover, this
method makes it easy to modify residues in peptides and
introduce a GABA functionality into complex molecules,
including the terpenoids isobornyl, menthol, cholesterol, and
ergosterol. Moreover, the reaction can be performed under
sunlight irradiation, it is readily amenable to gram-scale
production, and diverse product derivations are also realized.
Mechanistic studies indicate that a benzylic carbanion is
generated catalytically and acts as the key intermediate to react
with the in situ generated CO2. Further application of this new
strategy in other GTRA processes is underway in our
laboratory.

Figure 3. Kinetic experiments.

Figure 4. Stern−Volmer analysis with 2a and 3aa in the presence or
absence of CsF under N2.

Figure 5. Possible mechanism.
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