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ABSTRACT: Tethering a metal complex to its phosphate counter-
ion via a phosphine ligand enables a new strategy in asymmetric
counteranion-directed catalysis (ACDC). A straightforward, scalable
synthetic route gives access to the gold(I) complex of a phosphine
displaying a chiral phosphoric acid function. The complex generates a
catalytically active species with an unprecedented intramolecular
relationship between the cationic Au(I) center and the phosphate
counterion. The benefits of tethering the two functions of the catalyst
are demonstrated here in a tandem cycloisomerization/nucleophilic
addition reaction, by attaining high enantioselectivity levels (up to
97% ee) at an unusually low 0.2 mol % catalyst loading. Remarkably, the method is also compatible with a silver-free protocol.

■ INTRODUCTION

The challenge of enantioselective gold(I) catalysis clearly
relates to the linear geometry of the active complexes as well
as, in many instances, to the outer-sphere mechanisms of the
enantiodetermining step. Nevertheless, high enantioselectivity
could be achieved in recent years by means of either sterically
congested ligands, which create deep chiral pockets embedding
the distal active site, bifunctional phosphines, or by dinuclear
complexes possibly shaped through aurophilic interactions.1

Alternatively, Toste2 introduced the chiral counterion strategy,
where notably BINOL-derived phosphates operate as chiral
inducers in reactions involving cationic gold intermediates.
Despite some uncertainties over the exact mechanisms and role
of the phosphate anions, this strategy has shown prominent
potential and has triggered significant advances in both gold3,4

and other transition metal catalysis.5,6 In gold(I) catalysis, the
first disclosed intramolecular hydroalkoxylation, hydrocarbox-
ylation, and hydroamination reactions remain so far the main
application domains of the counterion strategy, although the
method should apply, in theory, to a much wider range of
reactions. Notably all reactions involving tight ion pairs in the
enantiodetermining step are potentially suitable, including
those going through carbocationic intermediates with remote,
neutral gold(I) units. This scenario is suitably typified by the
tandem heterocyclization−nucleophilic addition reactions in
Scheme 1.1.7 In this case and others, the stereochemical
control from the chiral counterion suffers, however, from the
poorly defined and flexible spatial arrangement of the
phosphate-carbocation pair. We suggest that this drawback
might be overcome by tethering somehow the phosphate
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Scheme 1. Proposed Enhanced Strategy for Asymmetric
Ion-Pair Catalysis: the Tethered Counterion-Directed
Catalysis (TCDC) Approach
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counterion to the cationic Au complex (Scheme 1.2b). A
covalent tether connecting the phosphate unit to a gold ligand
might afford sufficient geometrical constraints and molecular
organization to the key intermediate to allow efficient
stereochemical control. This approach, when properly
implemented, might push the limits of the “ion-pairing
strategy” in enantioselective gold catalysis and, more broadly,
in enantioselective transition metal catalysis. Transition metal
complexes embedding anion-tethered ligands have been
reported. However, in these cases, the ligand does not
dissociate from the metal all throughout the catalytic process.8

In this paper, we report on the specific design of a new
bifunctional ligand combining a monophosphine and a remote
BINOL-derived phosphate function.9 As a proof of concept,
we show that the corresponding Au(I) complex gives so far
unattained levels of enantioselectivity in the cycloisomeriza-
tion/addition sequence depicted in Scheme 1.1, at very low
catalytic loading. Theoretical studies enlighten and support
mechanistic hypotheses on the role of the phosphate
counterion in these reactions.

■ RESULTS AND DISCUSSION

The targeted Au-precatalyst (S)-5 contains an (S)-BINOL-
derived phosphoric acid moiety, with an ortho-
(diphenylphosphino)phenyl substituent at its 3-position.10,8a

The key steps for the synthesis of the LAuCl complex (S)-5,
shown in Scheme 2, were inspired by the respective work of
Iwa and Sawamura,8a and Sasai11 who reported on the
synthesis of BINOL-based bifunctional phosphines and studied
their rhodium coordination or applications in organocatalysis,
respectively.
The synthetic approach starts with the synthesis of the

BINOL-substituted triarylphosphine oxide (S)-211,12 via the
palladium coupling of boronate (S)-113 with (2-
bromophenyl)diphenylphosphine oxide, followed by MOM
group removal in acidic conditions. The phosphine oxide (S)-2
is obtained in an overall 74% yield. Reduction with
chlorosilane gives then the trivalent phosphine (S)-3 that
displays two sets of signals in both 31P and 1H NMR spectra, as
reported previously (31P NMR δ = −10.6 and −12.3 ppm).
Complexation of (S)-3 to Au(I) was carried out successfully
using Me2SAuCl as the starting material leading to (S)-4 in
89% yield. The final setup of the cyclic phosphoric acid unit

was done via a classical procedure, by using P(O)Cl3 as the
phosphorylating agent, followed by an acidic hydrolysis. It
afforded the desired (phosphine)AuCl complex (S)-5 as a
crystalline solid in 88% isolated yield.14 The whole sequence
could be scaled-up to several grams without notable difficulties
(3.15 g of (S)-5 have been isolated, 3.7 mmol). The molecular
structure of (S)-5 has been ascertained by X-ray crystallog-
raphy (Scheme 2). The 31P NMR spectrum of acid (S)-5 in
CDCl3 shows a 4:1 mixture of two species (31P NMR in
CDCl3: δ = 27.6 and 2.9 ppm for the major isomer; δ = 26.2
and 4.6 ppm for the minor isomer, see Scheme 3), tentatively
assigned as equilibrating rotamers. When the 31P NMR of
compound (S)-5 was recorded in deuterated pyridine, very
clean spectra were obtained showing a single set of signals (31P
NMR in pyridine-d5: δ = 29.2 and 6.7 ppm). In DMSO-d6 at
room temperature, compound (S)-5 also displays two sets of
broad signals, which coalesce into a single set at 110 °C (δ =
26.8 and 1.1 ppm).
Chloride abstraction from the gold complex (S)-5 has been

carried out then with the basic silver carbonate, so as to also
deprotonate concomitantly the phosphoric acid function
(Scheme 3, eq 1). From this experiment, the putative Au(I)
complex (S)-6 was obtained. Its 31P NMR spectrum shows a
broad signal at δ = 21.8 ppm and a sharp one at 8.3 ppm.
These data are in agreement with the postulated formation of
the phosphine-phosphate complex, since both phosphorus
signals are significantly shifted with respect to (S)-5.
Structurally related gold(I) phosphates from the literature
also display 31P NMR chemical shifts in the range 8−10 ppm,
in CD2Cl2.

15 Interestingly, complex 6 does not show 31P−31P
coupling in 31P NMR, indicating that the gold−oxygen
interaction may be more ionic than covalent.16 The molecular
formula of (S)-6 has been ascertained by mass spectrometry
(ESI m/z calculated for [M + HCOO]− = 849.0781; found:
m/z = 849.0876). For comparison purposes, complex (S)-5
was reacted also with AgNTf2, to give a new complex (S)-7a.
The 31P NMR of (S)-7a was diagnostic for a Cl/NTf2
exchange (high-field shift of the phosphine signal from 27.7
to 22.9 ppm), while the signal of the phosphoric acid group
remained unchanged at 2.9 ppm. Overall, although we could
not obtain so far crystals of (S)-6 suitable for X-ray diffraction
studies, both mass spectrometry and NMR data tend to
support the structural assignment, although they cannot

Scheme 2. Synthesis of the Phosphoric Acid-Tethered Phosphine Gold Chloride Complex 5
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discriminate so far between monomeric species and more
complex assemblies in solution. Assemblies would have
however little incidence on catalytic processes, since
coordination of the substrates would generate then the same
active species.
We then turned straight to catalytic tests by investigating the

tandem cycloisomerization/nucleophilic additions of 2-alkynyl-
enones typified in Table 1. As pointed out above, the rationale
behind this choice is that these reactions should involve
carbocation-phosphate pairs as the key intermediates and
therefore benefit from tethering gold to the chiral phosphate.
The reaction, initially reported by Larock7 by using AuCl3 as
the catalyst, leads to synthetically relevant, highly substituted
furans. It applies to a number of 2-alkynyl-enones (cyclo-
hexenones, chromones, acyclic enones) and tolerates a large
set of nucleophilic partners: alcohols, water, 1,3-dicarbonyls,
indoles, allenamides, anilines, and carbamates. With imines,17

allenamides,18 3-styrylindoles,19 and nitrones20 as the
nucleophiles, 3,4-fused bicyclic furans are obtained. Beside
Au(III) and Au(I) catalysts,21 also Pt(II),22 Pd(II),23 Ag(I),24

Cu(I), Cu(II),25 and In(III)26 salts proved to be good
catalysts. Despite the wide synthetic potential of these
reactions, enantioselective variants have been implemented
successfully for only a few substrate pairs. Beyond Toste’s
initial report on indole nucleophiles (Cu(TRIP)2 catalysts)

25b

and our recent report with Ag+ catalysts,24 notable examples
are the reactions carried out with nitrones,9e,27 3-styrylin-
doles19 and allenamides18 using either bis-gold complexes of
diphosphines or monogold complexes of sulfinamide-function-
alized phosphines and phosphoramidites.

The gold complex (S)-5 was evaluated initially in the
reaction of 2-(phenylethynyl)-2-cyclohexenone 8a with indole
9a. Comparative experiments were also performed to support
the postulated involvement of the phosphate function in the
stereochemical control of this reaction. Selected experiments
are reported in Table 1. Initial experiments showed that in situ
activation of (S)-5 with Ag2CO3 in various solvents enables a
good catalytic activity, with up to 88% ee for reactions
performed in toluene (Table 1, entries 2−4).28 Most
rewardingly, the precatalyst loading could be gradually
decreased from 5 to 2, 0.2, 0.1, and 0.05 mol % leading to
constantly good yields and enantioselectivities (91−96% ee,
entries 4−9). In the context of enantioselective Au(I) catalysis,
where a 3−5 mol % catalyst loading is usually employed, a 0.05
mol % catalyst loading is extremely low. This excellent catalytic
activity (TON 1400) might suggest an exceptional stability of
the resting state of the catalyst toward decay, possibly due to
the tight intramolecular pairing between Au(I) and its
phosphate counterion. Alternatively, the high reactivity might
be assigned to the strained, nonlinear coordination of gold in
complex 6 (see calculated geometries hereafter), which would

Scheme 3. Conversion of (S)-5 to Cationic Au(I) Species
and 31P NMR Spectra of the Au(I) Complexes 5−7 in
CDCl3

Table 1. Enantioselective Cyclization/Indole Addition
Reactions: Optimization with Precatalyst (S)-5a

entry cat. (mol %) additive (mol %) solvent
yield
(%)b ee (%)c

1 − Ag2CO3 (5) PhMe 0 −
2 (S)-5 (5) Ag2CO3 (2.5) MeCN 76 12
3 (S)-5 (5) Ag2CO3 (2.5) THF 29 86
4 (S)-5 (5) Ag2CO3 (2.5) PhMe 69 88
5 (S)-5 (2) Ag2CO3 (1) PhMe 88 91
6 (S)-5 (0.2) Ag2CO3 (0.1) PhMe 75 96
7 (S)-5 (0.2) Ag2CO3 (1) PhMe 68 94
8 (S)-5 (0.1) Ag2CO3

d PhMe 73 93
9 (S)-5 (0.05) Ag2CO3

d PhMe 70 91
10 (S)-7a (0.2) − PhMe 85 29
11 (S)-7b (0.2) − PhMe 76 62
12 (S)-11a (0.2) − PhMe 85 15
13 (S)-11b (0.2) − PhMe 90 12
14 (R)-12 (10) − PhMe 60 2424

15 (S)-13a (0.2) − PhMe 70 0
16 (S)-13b (0.2) − PhMe 12 10

aReactions were run with a 1:1 ratio of 8a and 9a, at rt for 18 h.
Reactions in entries 1−5 were performed at a 0.1 mmol scale (0.1 M).
In entries 6−10 (0.55 mmol scale), the concentration of the catalyst
was 0.4 M. bIsolated yields. cDetermined by chiral HPLC. dAt low
catalytic loading, the silver carbonate was used in excess, with no
impact on the enantioselectivity level.
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decrease the deformation energy required for the coordination
of the substrate.29

A few experiments have been carried out then, whose results
overall confirm the role of the phosphate tether.

• Catalysts (S)-7a,b, generated from (S)-5 with the non-
basic silver salts AgNTf2 and AgSbF6, gave significantly
lower enantiomeric excesses (entries 10, 11).

• Catalysts (S)-11a,b, which display the same molecular
scaffold as (S)-5 but a methyl phosphate function,
instead of the phosphoric acid function, give very low
enantiomeric excesses.30

• The (Ph3P)Au(TRIP) complex (R)-12, which may be
viewed as a non-chelated structural analogue of 6, gives a
much lower enantiomeric excess (24% ee,24 entry 14).

• Another non-chelated analogue has been prepared
purposely: the (Ph3P)Au(phosphate) (S)-13a, which
contains the same tethered phosphine/phosphate of (S)-
5 but displays an oxidized phosphorus function. It gave a
racemic product (entry 15).

Finally, from results in Table 1, it may be noted that Ag2CO3
does not catalyze, by itself, this reaction (entry 1), and the
silver phosphate (S)-13b displays low catalytic activity and low
enantioselectivity (entry 16). Therefore, silver catalysis should
not compete significantly with the gold promoted catalytic
process in entries 4−9.
The absolute configuration of the final product 10aa has

been established, for the first time in this series, by X-ray
crystallography (see the Supporting Information). The (S)-
configured catalyst 5 gives (R)-10aa as the major enantiomer.
Overall, the comparative experiments in Table 1 clearly

highlight the positive effect of tethering the phosphine and
phosphate functions and therefore substantiate our catalyst
design and working hypothesis.
The high catalytic performance of (S)-5 in the reaction

above encouraged us then to investigate the substrate scope by
considering the substituted indoles 9b−g (Scheme 4).
Substituents such as methoxy, bromine, and methyl groups
were tolerated on the C5 and C6 positions of indole, delivering
10ab−ad in high enantiomeric excesses. Interestingly, the C2-
substituted 2-methylindole gave 10ae in high ee and higher
yield than the Cu(II) based method.25b

In a second series of experiments, the 2-alkynyl-cyclo-
hexenones 8b−e, displaying various R1 groups, were reacted
with indole 9a (R2 = H). For R1 = p-anisyl, p-tolyl, and m-
anisyl, the corresponding bicyclic furanes 10ba, 10ca, and
10da were obtained in high yields and enantioselectivities.
Finally, an alkyl substituted substrate 8e (R1 = C5H11) was
reacted with indole and led to the expected furane 10ea with
87% ee. Most notably, the reaction between N-Me-indole 9f
and 8a delivered the addition product 10af in high yield (92%)
and enantiomeric excess (94% ee). A similar level of
enantioselectivity was obtained also from N-benzyl indole 9g
(10ag, 92% ee). These two results are crucial to enlighten the
mechanism of the stereochemical control. They indeed
indicate that the NH function of indole is not essential and
rule out the involvement of H-bonds between phosphate and
indole in the stereodetermining step. They also demonstrate
that our method enables the previously unsuccessful use of N-
substituted indoles in these catalytic reactions.24

Cyclopentenone 8f and cycloheptanone 8g were then used
in the reaction leading to the corresponding bicyclic furanes
10fa and 10ga in 21% ee and 94% ee, respectively. These

unprecedented reactions show that the enantioselective
cyclization/nucleophilic addition sequence applies successfully,
not only to six-membered but also to seven-membered enones.
In another series of experiments, 3-substituted indoles were

considered (Scheme 5). 3-Methylindole could be reacted:
addition through its C2-position afforded compound 14ah in
high yield and enantioselectivity (93% ee). Extension of the
process to 1,3-dimethylindole gave 14ai in high 95% ee but
moderate yield, that could however be increased to 91% using
2 mol % of the catalyst. When increasing the steric hindrance
at the C3 position we observed, interestingly, that the reaction
may lead to mixtures of two products resulting from C2 and N-
alkylations, respectively. Thus, methyl-3-indolylacetate 9j led
to an essentially 50/50 mixture of 14aj and 15aj in excellent
ee’s, while the 3-isopropylindole 9k afforded mainly the N-
alkylated product 15ak in 94% ee. These experiments
demonstrate the possibility to engage the three potentially
nucleophilic positions of indoles in highly enantioselective
cycloisomerization/addition processes.
The N-additions observed here encouraged us to move then

to totally different series of nucleophiles as reaction partners.
We were pleased to find that unprecedented enantioselectivity
levels can be attained with heteronucleophiles such as
benzylcarbamate (94% ee), tosylamide (87% ee), and phenol
(90% ee) (Scheme 6). Noteworthy, even the simple addition
of water takes place with high stereocontrol, leading to the
alcohol 16ea in 79% ee. The reaction also affords ethers 16eb
and 16ec (homochiral 16eb 50% yield, meso 16ec 18% yield).
Finally, the use of cyclohexane-1,3-dione as nucleophile

Scheme 4. Scope of the Enantioselective Addition of Indoles
9 to Enones 8a,b

aIsolated yields. bEnantiomeric excesses were determined by chiral
HPLC. cReaction was performed with 2 mol % of the precatalyst 5.
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afforded 16f in 77% yield and 89% ee, resulting from O-
addition of the nucleophile to the intermediate carbocation, as
previously observed by Larock.7b Overall these experiments
demonstrate the high stereocontrol induced by the newly
designed (S)-5/Ag2CO3 catalytic system in reactions involving
a variety of nucleophiles, from substituted indoles to simple
nitrogen and oxygen nucleophiles.
Finally, during these studies, we disclosed rewardingly that

activation of precatalyst (S)-5 by a silver salt may not be
systematically required (Table 2). The reaction of ketones 8a
and 8g with representative nucleophiles (indoles and
tosylamide) could be performed in the presence of (S)-5
only, and the corresponding products were obtained in
moderate to good yields and very high enantiomeric excesses.
The gold chloride (S)-5 gives a slightly lower reaction rate,
with respect to the Ag2CO3 activated catalyst. Thus, we believe
that the precatalyst reacts in situ with the weakly basic
nucleophiles of the reaction mixture, resulting in the
spontaneous, reversible formation of the active gold phosphate
catalyst by HCl abstraction. The precatalyst 5 may thus be
considered as a reservoir of stable Au(I) complex gradually
delivering the active catalyst. This rare property of (S)-5 may
be extremely important in the general context of Au(I)
catalysis, where the effects of silver salts are far from being
innocent.4b,31

The search for alternative silver-free gold catalysts is hence a
long-lasting quest.32 Most approaches rely on protic acid
activation of LAuMe complexes,33 Brønsted acid activation of
LAu(OH),34 activation of LAuCl with silylium salts35 or
Cu(OTf)2

36 and addition of a Brønsted acid/Lewis acid to
(PPh3)Au(Pht).

31c As far as we know, the spontaneous

dissociation of chloride from Au(I) complex has been claimed
only in the gold-catalyzed hydration of alkynes using
IPrAuCl.37

The mechanistic pathway currently postulated for these
reactions is illustrated in Scheme 7, with enone 8 and indole 9
as the substrates. Activation of the alkyne unit by Au(I) (Int. I)
triggers the cycloisomerization of enone 8 into the cationic
intermediate II featuring a phosphate counterion. The
nucleophilic addition of indole to II, leads then to intermediate
III. From III, the proto-deauration step proceeds through
formal H-transfer, that might be mediated actually by the
phosphate itself, or by trace amounts of other bases (e.g.,

Scheme 5. Enantioselective Additions of C3-Substituted
Indoles to Enone 8a

Scheme 6. Enantioselective Tandem Cyclization−Addition
of Heteronucleophiles Promoted by (S)-5/Ag2CO3

Table 2. Use of Nonactivated (S)-5 in the Enantioselective
Cyclization/Addition Reactions

entry 8 nucleophile product yield (%)a ee (%)b

1 8a 9a 10aa 80 92
2 8a 9b 10ab 73 94
3 8a 9c 10ac 30 75
4 8g 9a 10ga 55 95
5 8a TsNH2 16b 41 88

aIsolated yields. bDetermined by chiral HPLC.
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HO−). According to the postulated mechanism, high
enantioselectivity levels should result from a tight ion pairing
in intermediate II, which will bring the chiral phosphate unit
closer to the prochiral carbon in the enantiodetermining step.
It can be assumed that the geometrical constraints enforced by
tethering gold(I) to phosphate create a more organized spatial
arrangement in II and enable the excellent stereocontrol.
To gain better insight into the structure of the potential

catalyst (S)-6 and the postulated reaction intermediates II and
III, we have carried out computational studies at the DFT level
(see the SI for computational details). The lowest energy
structure for monomeric catalyst (S)-6 is displayed in Figure 1
(6a). It shows that coordination of the phosphate to gold
involves preferentially the pro-S oxygen atom, which gives a S-
configured phosphorus. Coordination of the other PO unit
would lead to 6b which is 42 kJ mol−1 higher in energy
compared to 6a, due to its more distorted and strained
geometry (P−Au−O bond angle = 155.5° for 6b vs 159.9° for
6a; Au−O = 2.152 Å for 6b vs 2.088 Å for 6a).
Examination of the metrical parameters of 6a around the

metal center reveals a significantly bent phosphine-gold-
phosphate unit (P−Au−O bond angle = 159.9°), due to the
geometrical constraints enforced by the molecular backbone of
the ligand. For comparison, the geometry of the non-tethered
(triphenylphosphine)gold(I) BINOL-phosphate complex 17
has been calculated as well (Figure 1). In 17, the linearity at
gold is almost restored (P−Au−O bond angle = 172.9°), in
line with the previously reported X-ray structure (172.7°).15

The deviation from linearity observed in 6 has only limited
effect on the bond lengths: the Au−P (2.279 Å) and Au−O
(2.088 Å) bond distances are similar to those observed
experimentally for a (triphenylphosphine)gold-phosphate
(2.20 and 2.058 Å, respectively)15 and its computational
model 17 (2.280 and 2.106 Å, respectively). The bent
geometry of the complex might have effects on the energy
profile throughout the catalytic cycle.
The key carbocationic intermediate IIa features an electro-

static pairing between the carbocation and the tethered
phosphate group leading to the preferred conformation
shown in Figure 2. The stereochemistry control should result
then from two combined effects: the preferred conformation of
the zwitterionic intermediate IIa and the preferred addition of

the nucleophilic indole that is likely to take place from the face
opposite to the phosphate group. Importantly, the resulting
configuration of stereogenic center in IIIa matches with that of
the final product 10a established by X-ray crystallography (R-
configuration). Overall, our preliminary calculations (see the
Supporting Information) highlight (a) the nonlinear geometry
of the P−Au−O moiety in catalyst 6 that might be responsible
for its increased reactivity; (b) an easy cycloisomerization
process triggered by gold(I) (ΔG‡ = 36.6 kJ mol−1); (c) the
strong preference of the carbocationic intermediate II for ion-
pairing with the phosphate anion; and (d) an exergonic
nucleophilic addition step taking place from the less hindered
face, opposite to the phosphate group.

■ CONCLUSION
In conclusion, this work affords clear evidence that tethering of
a phosphine and a phosphoric acid represents a promising new
approach to catalyst design. By combining the chiral
counterion strategy and the remote cooperative group strategy,
this design has enabled unprecedented enantioselectivity levels
to be attained in a highly synthetically useful reaction.
Tethering of the phosphate counterion also produces a rare
example of gold chloride complex that does not require
activation by silver salts. While in gold catalysis the ACDC
strategy was hitherto limited to intramolecular processes, the
counterion tethering approach allowed us to successfully

Scheme 7. Postulated Mechanistic Pathway

Figure 1. DFT calculated structures of catalyst (S)-6 and its non-
tethered analogue 17. Relative Gibbs free energy in kJ mol−1.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://dx.doi.org/10.1021/jacs.9b11154
J. Am. Chem. Soc. 2020, 142, 3797−3805

3802

http://pubs.acs.org/doi/suppl/10.1021/jacs.9b11154/suppl_file/ja9b11154_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b11154/suppl_file/ja9b11154_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.9b11154?fig=sch7&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b11154?fig=sch7&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b11154?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b11154?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b11154?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.9b11154?fig=fig1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.9b11154?ref=pdf


develop an intermolecular reaction. Following this proof of
concept, the tethered counterion-directed catalysis (TCDC)
should find applications not only in a range of gold(I)
catalyzed reactions, but also in a number of processes
promoted by other transition metals. The scope of these
catalysts is being investigated in our group.
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