What is the real origin of activity of Fe-N-C electrocatalysts in O₂ reduction reaction? Critical roles of coordinating pyrrolic N and axially adsorbing species

Xu Hu¹, Suya Chen¹, Letian Chen¹, Yun Tian², Sai Yao¹, Zhengyu Lu¹, Xu Zhang^{2*}, Zhen Zhou^{1,2*}

¹ School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China ² School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China * Corresponding author. E-mail: zzuzhangxu@zzu.edu.cn; zhouzhen@nankai.edu.cn

1. Supporting Figures

Figure S1. Six different pyridinic N type FeN_xC models. (a) pyridinic FeN_3C , (b) pyridinic $\text{FeN}_2\text{C-1}$, (c) pyridinic $\text{FeN}_2\text{C-2}$, (d) pyridinic $\text{FeN}_2\text{C-3}$, (e) pyridinic FeN_1C , (f) pyridinic FeN_0C . C, gray; N, blue; Fe, brown.

Figure S2. Six different pyrrolic N type FeN_xC models. (a) pyrrolic FeN_4C , (b) pyrrolic FeN_3C , (c) pyrrolic $\text{FeN}_2\text{C-1}$, (d) pyrrolic $\text{FeN}_2\text{C-2}$, (e) pyrrolic FeN_1C , (f) pyrrolic FeN_0C . C, gray; N, blue; Fe, brown.

Figure S3. Density of state analysis diagram of (a) pyrrolic and (b) pyridinic FeN₄C. The blue dashed line represents the Fermi level.

Figure S4. (a) The calculated energies of bare pyridinic FeN₃C slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyridinic FeN₃C at U = 0.30 V/RHE, pH = 1; U = 0.03 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S5. (a) The calculated energies of bare pyrrolic FeN₃C slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyrrolic FeN₃C at U = 0.63 V/RHE, pH = 1; U = 0.50 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S6. (a) The calculated energies of bare pyridinic FeN_2C-2 slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyridinic FeN₂C-2 at U = 0.23 V/RHE, pH = 1; U = -0.02 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S7. (a) The calculated energies of bare pyridinic FeN_2C-3 slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyridinic FeN_2C-3 at U = 0.16 V/RHE, pH = 1; U = -0.16 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S8. (a) The calculated energies of bare pyridinic FeN_2C-1 slab (black) and corresponding three reaction intermediates (*00H, red; *0, blue; *0H, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyridinic FeN_2C-1 at U = 0.09 V/RHE, pH = 1; U = -0.12 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S9. (a) The calculated energies of bare pyrrolic FeN_2C-2 slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyrrolic FeN_2C-2 at U = 0.78 V/RHE, pH = 1; U = 0.65 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S10. (a) The calculated energies of bare pyrrolic FeN_2C-1 slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyrrolic FeN_2C-1 at U = 0.62 V/RHE, pH = 1; U = 0.44 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S11. (a) The calculated energies of bare pyridinic FeN_1C slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyridinic FeN_0C at U = 0.21 V/RHE, pH = 1; U = -0.04 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S12. (a) The calculated energies of bare pyrrolic FeN₁C slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyrrolic FeN₁C at U = 0.69 V/RHE, pH = 1; U = 0.53 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S13. (a) The calculated energies of bare pyridinic FeN_0C slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyridinic FeN_0C at U = -0.02 V/RHE, pH = 1; U = -0.32 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S14. (a) The calculated energies of bare pyrrolic FeN_0C slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (b) Free energy profile of ORR catalyzed by pyrrolic FeN_0C at U = 0.56 V/RHE, pH = 1; U = 0.43 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1.

Figure S15. The free energy change for H_2O_2 formation and *O formation at 0 V/RHE under pH =1 (black symbol) or 13 (red symbol) for different configurations. "pyri" means pyridinic and "pyrro" means pyrrolic.

Figure S16. (a) Optimized structure of pyridinic- N_4H_2 . The active site is marked by red circle. (b) The calculated energies of bare pyridinic N_4H_2 slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (c) The adsorption energies of *OOH, *O, and *OH as a function of applied electrode potential. (d) Free energy profile of ORR catalyzed by pyridinic N_4H_2 at U = 0.18 V/RHE, pH = 1; U = 0.34 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1. C, gray; N, blue; H, white.

Figure S17. (a) Optimized structure of pyrrolic N_4H_3 . The active site is marked by red circle. (b) The calculated energies of bare pyrrolic N_4H_3 slab (black) and corresponding three reaction intermediates (*OOH, red; *O, blue; *OH, green) as a function of applied electrode potential. (c) The adsorption energies of *OOH, *O, and *OH as a function of applied electrode potential. (d) Free energy profile of ORR catalyzed by pyrrolic N_4H_3 at U = 0.20 V/RHE, pH = 1; U = 0.23 V/RHE, pH = 13; U = 0 V/RHE, pH = 13; and U = 0 V/RHE, pH = 1. C, gray; N, blue; H, white.

Figure S18. Optimized reaction models during the ORR catalyzed by pyridinic *O-FeN₄C at zero excess charge case. C, gray; N, blue; O, red; H, white, Fe, brown.

Figure S19. Optimized reaction models during the ORR catalyzed by pyrrolic *O-FeN₄C at zero excess charge case. C, gray; N, blue; O, red; H, white, Fe, brown.

Figure S20. Optimized reaction models during the ORR catalyzed by pyridinic $OH-FeN_4C$ at zero excess charge case. C, gray; N, blue; O, red; H, white, Fe, brown.

Figure S21. Optimized reaction models during the ORR catalyzed by pyrrolic *OH-FeN₄C at zero excess charge case. C, gray; N, blue; O, red; H, white, Fe, brown.

Figure S22. pH-dependent and potential-dependent contour plot of adsorption energies of *OOH on (a) pyridinic and (b) pyrrolic *O-FeN₄C.

Figure S23. The adsorption energies of *OOH, *O, and *OH as a function of applied potential on pyridinic *OH-FeN₄C and pyrrolic *OH-FeN₄C.

2. Supporting tables

Table S1. The DFT energies (E(DFT)) and corresponding free energy correction values (Δ G) of H₂(g) and H₂O(l) are calculated at 1 bar and 0.035 bar. Due to the fact that O₂ is poorly described in DFT calculations, the free energy of O₂ is calculated by G₀₂ = 2G_{H20} - 2G_{H2} + 4.921 eV. The DFT energies of H₂ and H₂O were calculated in a 10 Å × 10 Å × 10 Å unit cell in vacuum.

	pressure/bar	temperature/K	E(DFT)/eV	ΔG/eV	G/eV
0 ₂ (g)	1	298.150	/	/	-9.903
H ₂ (g)	1	298.150	-6.771	-0.040	-6.811
H ₂ O(l)	0.035	298.150	-14.223	0.000	-14.223

Table S2. Fitted parameters of the potential-dependent free energy (with the from $E = I+b_1 \times U+b_2 \times U^2$) for pyridinic FeN₄C. U₀ (V/SHE) and C (e/V) are the potential of zero charge (PZC) and capacitance of the corresponding system, respectively, and E₀ (eV) is the energy of the system at the PZC.

Species	I	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-281.410	-0.831	-0.537	1.074	-0.773	-281.089	0.9990
*00H	-296.681	-0.605	-0.516	1.031	-0.587	-296.503	0.9982
*0	-287.645	-0.451	-0.480	0.959	-0.470	-287.539	0.9978
*0H	-292.109	-0.635	-0.489	0.978	-0.649	-291.903	0.9976

Table S3. Fitted parameters of the potential-dependent free energy for pyrrolic FeN₄C.

Species	Ι	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-224.772	-0.113	-0.395	0.790	-0.143	-224.764	0.9916
*00H	-239.713	0.168	-0.515	1.031	0.162	-239.699	0.9538
*0	-230.599	0.277	-0.486	0.971	0.285	-230.559	0.9944
*0H	-235.034	0.081	-0.517	1.035	0.079	-235.031	0.9864

Table S4. Fitted parameters of the potential-dependent free energy for pyridinic *O-FeN₄C.

Species	Ι	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-287.645	-0.451	-0.480	0.959	-0.470	-287.539	0.9978
*00H	-302.201	-0.316	-0.581	1.162	-0.272	-302.158	0.9990
*0	-292.411	-0.136	-0.533	1.066	-0.128	-292.402	0.9973
*0H	-297.747	-0.213	-0.496	0.993	-0.214	-297.725	0.9975

Table S5. Fitted	parameters of	the potential-	dependent f	free energy f	or pyrrolic *	O-FeN₄C.
	1	1	1	0,	1.2	1

Species	I	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-230.599	0.277	-0.486	0.971	0.285	-230.559	0.9944
*00H	-244.980	0.578	-0.646	1.292	0.447	-244.851	0.9904
*0	-235.223	0.648	-0.560	1.119	0.579	-235.035	0.9999
*OH	-240.508	0.635	-0.577	1.155	0.550	-240.333	0.9990

Table S6. Fitted parameters of the potential-dependent free energy for pyridinic *OH-FeN₄C.

Species	Ι	b ₁	\mathbf{b}_2	С	U ₀	E ₀	R ²
slab	-292.109	-0.635	-0.489	0.978	-0.649	-291.903	0.9976
*00H	-307.099	-0.535	-0.529	1.059	-0.505	-306.964	0.9996
*0	-297.796	-0.211	-0.494	0.988	-0.213	-297.774	0.9980
*0H	-302.617	-0.386	-0.507	1.015	-0.380	-302.543	0.9956

Table S7. Fitted parameters of the potential-dependent free energy for pyrrolic *OH-FeN₄C.

Species	I	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-235.034	0.081	-0.517	1.035	0.079	-235.031	0.9864
*00H	-249.998	0.363	-0.581	1.161	0.312	-249.941	0.9968
*0	-240.499	0.527	-0.521	1.042	0.506	-240.366	0.9842
*0H	-245.541	0.330	-0.520	1.039	0.318	-245.488	0.9949

Table S8. Fitted parameters of the potential-dependent free energy for pyridinic FeN₃C.

Species	Ι	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-281.049	-0.692	-0.520	1.040	-0.665	-280.819	0.9984
*00H	-296.255	-0.402	-0.499	0.999	-0.402	-296.175	0.9993
*0	-287.406	-0.218	-0.484	0.968	-0.226	-287.382	0.9988
*0H	-291.924	-0.385	-0.454	0.908	-0.424	-291.842	0.9989

Table S9. Fitted parameters of the potential-dependent free energy for pyrrolic FeN₃C.

Species	Ι	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-224.049	-0.014	-0.459	0.919	-0.015	-224.049	0.9959
*00H	-239.054	0.167	-0.517	1.033	0.161	-239.040	0.9979
*0	-229.958	0.351	-0.520	1.040	0.337	-229.899	0.9877
*OH	-234.596	0.155	-0.498	0.997	0.155	-234.584	0.9973

Table S10. Fitted parameters of the potential-dependent free energy for pyridinic FeN₂C-2.

Species	Ι	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-280.650	-0.479	-0.474	0.949	-0.505	-280.529	0.9958
*00H	-295.862	-0.220	-0.513	1.025	-0.215	-295.839	0.9996
*0	-287.081	-0.029	-0.484	0.969	-0.030	-287.081	0.9999
*0H	-291.562	-0.211	-0.458	0.916	-0.230	-291.538	0.9989

Table S11. Fitted parameters of the potential-dependent free energy for pyridinic FeN₂C-3.

Species	Ι	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-280.948	-0.514	-0.448	0.896	-0.573	-280.801	0.9940
*00H	-296.168	-0.197	-0.476	0.952	-0.207	-296.148	0.9975
*0	-287.327	-0.040	-0.465	0.930	-0.043	-287.326	0.9994
* OH	-291.922	-0.181	-0.420	0.841	-0.215	-291.902	0.9980

Table S12. Fitted parameters of the potential-dependent free energy for pyridinic FeN₂C-1.

	-		• •		00	10	-
Species	Ι	b 1	\mathbf{b}_2	С	U ₀	E ₀	R ²
slab	-280.479	-0.463	-0.471	0.943	-0.491	-280.365	0.9958
*00H	-295.817	-0.306	-0.480	0.959	-0.319	-295.769	0.9920
*0	-287.260	-0.067	-0.452	0.905	-0.074	-287.258	0.9980
*0H	-291.495	-0.219	-0.454	0.908	-0.241	-291.468	0.9996

Table S13. Fitted parameters of the potential-dependent free energy for pyrrolic FeN₂C-2.

Species	I	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-223.479	0.023	-0.483	0.967	0.024	-223.478	0.9938
*00H	-238.418	0.208	-0.545	1.090	0.191	-238.398	0.9970
*0	-229.411	0.394	-0.524	1.047	0.376	-229.337	0.9863
*0H	-233.904	0.207	-0.520	1.041	0.199	-233.883	0.9971

Table S14. Fitted parameters of the potential-dependent free energy for pyrrolic FeN₂C-1.

Species	Ι	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-223.004	-0.010	-0.526	1.052	-0.010	-223.004	0.9972
*00H	-237.998	0.311	-0.642	1.284	0.242	-237.960	0.9994
*0	-229.208	0.339	-0.515	1.029	0.330	-229.153	0.9974
*0H	-233.596	0.196	-0.516	1.032	0.190	-233.577	0.9962

Table S15. Fitted parameters of the potential-dependent free energy for pyridinic FeN₁C.

Species	Ι	b ₁	\mathbf{b}_2	С	U ₀	E ₀	R ²
slab	-280.248	-0.283	-0.438	0.875	-0.323	-280.203	0.9951
*00H	-295.512	-0.017	-0.486	0.973	-0.018	-295.512	0.9987
*0	-287.034	0.117	-0.475	0.950	0.123	-287.026	0.9981
* OH	-291.172	-0.046	-0.470	0.940	-0.049	-291.171	0.9964

Table S16. Fitted parameters of the potential-dependent free energy for pyrrolic FeN₁C.

Table 510. I filled parameters of the potential dependent free energy for pyrrone rente.									
Species	Ι	b 1	b ₂	С	U ₀	E ₀	R ²		
slab	-222.588	0.065	-0.513	1.027	0.063	-222.586	0.9981		
*00H	-237.477	0.308	-0.609	1.218	0.253	-237.438	0.9996		
*0	-228.746	0.393	-0.526	1.051	0.374	-228.673	0.9936		
*0H	-233.106	0.249	-0.519	1.037	0.240	-233.076	0.9991		

Table S17. Fitted parameters of the potential-dependent free energy for pyridinic FeN_0C .

Species	Ι	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-279.805	-0.238	-0.462	0.925	-0.257	-279.774	0.9919
*00H	-295.251	0.237	-0.606	1.211	0.196	-295.228	0.9978
*0	-287.102	0.282	-0.474	0.949	0.297	-287.060	0.9993
*0H	-290.901	0.040	-0.477	0.954	0.042	-290.901	0.9956

Table S18. Fitted parameters of the potential-dependent free energy for pyrrolic FeN₀C.

Species	Ι	b ₁	b ₂	С	U ₀	E ₀	R ²
slab	-221.829	0.117	-0.480	0.960	0.122	-221.822	0.9999
*00H	-236.762	0.290	-0.537	1.073	0.270	-236.723	0.9995
*0	-227.828	0.303	-0.598	1.196	0.253	-227.790	0.9698
*0H	-232.438	0.280	-0.500	1.001	0.280	-232.399	0.9999

Table S19. The DFT calculated energy of pure FeN_4C , *O- FeN_4C , *OH- FeN_4C and corresponding configurations after metal dissolution and N protonation, $N_4H_x(x=1,2,3,4)$

0				1	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	FeN ₄ C	*O-FeN ₄ C	*ОН-	N_4H_0	N_4H_1	N_4H_2	N_4H_3	N ₄ H ₄
			FeN4C					
energy (pyrrolic FeN4)/eV	-223.775	-229.396	-233.937	-211.148	-216.831	-222.051	-226.134	-229.498
energy (pyridini c	-279.978	-286.200	-290.612	-269.481	-274.542	-279.253	-282.248	-285.134

FeN₄)/eV

The most stable N protonation species for pyridinic and pyrrolic N_4H_x are determined by protonation energy change, $\Delta E_{protonation}$ which is defined as $\Delta E_{protonation} = E(N_4H_x) - E(N_4H_0) - x/2E(H_2)$, where $E(N_4H_x)$, $E(N_4H_0)$ and $E(H_2)$ is the DFT calculated energy of N_4H_x , N_4H_0 and H_2 . We determine the most stable protonation species for pyridinic and pyrrolic to be N_4H_2 and N_4H_3 by the corresponding minimum $\Delta E_{protonation}$.