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Supplementary Table 1 | XPS analysis and coverage factors. Atomic ratio of 2PACz, HBzA, and mixture 

of 2PACz+HBzA onto ITO. The coverage factor can be calculated from the deconvoluted C 1s peak and In 

3d5/2. The peak area of C 1s is divided by the number of atom in the molecule (2PACz and HBzA) and 

then divided by the In 3d5/2 core level area. 

Sample C area  In3d5/2 area  C atoms  N / In P / In Coverage factor (× 10
-3

) 

2PACz washed 6062.29 115223.7 14 0.16 0.09 3.76 

HBzA 928.94 79197.69 7 0.11 n/a 7.52 

HBzA washed 6062.29 115223.7 7 0.03 n/a 1.68 

2PACz+HBzA 875.98 6213.61 21 0.12 0.15 6.71 

2PACz+HBzA washed 11759.4 125488.3 21 0.09 0.16 4.46 
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Supplementary Fig. 1 | PL mapping images of bottom-side 2D/3D films with (a) 1:0.5, (b) 1:1, and (c) 1:2 

ratio of SAM:2D ligand at wavelength ~570 nm, which corresponds to n = 2 layers (images extracted using 

PHySpecV2). The bright spots indicate the 2D perovskite layer, while the dark spots belong to the 3D 

perovskite layer. For PL mapping measurement for bottom-side 2D passivation, we used the quartz glass 

to maximize the resolution of the images coupled with around 5 nm-thick ITO coating by sputtering to attach 

the SAM to the substrates. Then, we coated the perovskite film on top of it.   
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Supplementary Fig. 2 | a, Schematic of lift-off method. The peeling-off method was done by sandwiching 

the top surface of 2D/3D perovskite film after deposited thin metal to help the epoxy glue stick well on the 

perovskite film with the ITO/glass side (see schematic in panel a). After the glue is solidified, the film was 

peeled off from the glass/ITO/PTAA/2PACz-HTL. Then the collected perovskite film was washed with 

ethanol and chlorobenze dynamically to remove residual PTAA or 2PACz on the surface. Finally, the 

collected perovskite surface from the bottom interface is ready for characterization. b, Photograph of 

perovskite film after peeling-off. The left side is peeled-off glass, and the right side is the collected perovskite 

film sample. c, GIWAXS maps of bottom-side 2D/3D after peeling-off. The diffraction ring pattern is 

consistent with the result for the top-side 2D/3D sample in Fig. 2c. d, Top view of SEM images of the control 

and bottom-side 2D/3D sample after peeling off. e, High-resolution spectrum of the carbon region (C1s) of 

control and bottom-side 2D/3D perovskite films. 
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Supplementary Fig. 3 | Normalized PL of top-side 3D/2D perovskite films using a direct coating of HBzA 

HBr solution on top of 3D perovskite film, known as the conventional method. 
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Supplementary Fig. 4 | GIWAXS maps of control 3D perovskite film before (a) and after the deposit of a 

15 nm-thick PbI2 layer (b). The strong diffraction rings at qz = 1.0 and 1.8 Å-1 for both control and 2D/3D 

perovskite films correspond to (100) and (111) planes, respectively, featuring 3D bulk perovskite. The 

additional peak at ~0.9 Å-1 of the control film corresponds to the PbI2 peak, confirming the deposited PbI2 

layer via vacuum deposition. X-ray diffraction spectra of a thin film of phase-pure 2D perovskite with (c) n 

= 2 and (d) n =1 dimensionalities. 

 

 

 
 

Supplementary Fig. 5 | Top view of SEM images of (a) control, (b) bottom-side 2D/3D, and (c) double-

side 2D/3D perovskite film samples.  
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Supplementary Fig. 6 | Cross-sectional SEM image of 25 nm PbI2-thick of top-side 2D/3D heterojunction 

sample. It is obtained that the average 2D perovskite thickness is around 55 nm.  

 

 

 

 

 

 
Supplementary Fig. 7 | Differential lifetime of the log-log graph from transient PL decay of at initial 100 ns 

of 2D/3D perovskite with different deposition methods (hybrid and conventional solution post-treatment) 

and thickness of 2D perovskite (35 nm and 55 nm thick) with the hybrid method, including the charge-

transporting layer stacks. 
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Supplementary Fig. 8 | External quantum efficiency (EQE) plot of double-side 2D/3D heterojunction-based 

device without white light bias and the first derivative of the EQE plot with an estimated bandgap of (a) 

Cs0.025MA0.075FA0.90PbI3  perovskite of around 1.53 eV and (b) Cs0.05FA0.95PbI3 perovskite of around 1.54 

eV. The measured JSC values from J-V analysis is consistent with the integrated JSC values from the EQE 

analysis with only exhibit less than 1% mismatch. 

 

 

 

 

 

 

 

Supplementary Fig. 9 | Statistics of PCE, VOC, and FF of PSCs with double-side 2D/3D heterojunctions 

using HBzA ligand (1:1 ratio) with various HTL SAMs (2PACz, MeO-2PACz, and 4PADCB). The statistics 

are obtained from 20 cells of each condition from different batches and triple-cations 

Cs0.025MA0.075FA0.90PbI3 perovskite. 
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Supplementary Fig. 10 | Statistics of device performance (PCE, VOC, and FF values) from person to person 

variation from three researchers. 

 

 

 

20

21

22

23

24

25

26

P
C

E
 (

%
)

1050

1100

1150

1200

1250

V
O

C
 (

m
V

)

Control R1 R1 Control R2 R2 Control R3 R3

75

80

85

F
F

 (
%

)



 9 

 



 10

 



 11

 
Supplementary Fig. 11 | Certified report results from the third party of an accredited photovoltaic 

certification laboratory (Enli Tech. Optoelectronic Calibration Lab., Taiwan, ISO 17025 certificated). The 

certified PCE is 25.00% under reverse scan and 23.27% under forward scan directions with an aperture of 

0.0626 cm2 (total active area 0.1 cm2). *The aperture masks were defined with optical microscope. 
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Supplementary Fig. 12 | a, VOC × FF value of high efficiency of the inverted and regular structure of PSCs 

with respect to the Shockley–Queisser limit with PCE above 24% with bulk or top-side passivation only 

compared with our double-side 2D/3D passivation. b, PCEs of champion inverted and regular PSCs as 

summarized in Supplementary Table 2. 

 

 

 

 

 

Supplementary Fig. 13 | Capacitance–voltage under various light illumination intensities of (a) control and 

(b) double-side 2D/3D heterojunctions-based devices. A large shifting of the Vpeak indicated a large charge 

accumulation (more charge trapping) at the interfaces of solar cell devices. 
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Supplementary Table 2 | Summary of high performance-based inverted and regular PSCs using bulk or 

top-side passivation only, compared to this work with double-side passivation. The bandgap is calculated 

from the first derivative of the EQE plot or tau plot of absorbance of perovskite film.  

Device configuration 
PCE 

(%) 

VOC 

(V) 

JSC (mA 

cm-2) 
FF 

Bandgap 

(Eg) 

Certified 

PCE (%) Ref. 

FTO/mp-TiO
2
/FAPbI3/2D/spiro-OMeTAD/Au 24.8  1.18 26.2 79.6 1.48 24.6 

Science 2020,  
1 

FTO/mp-TiO
2
/FAMA/spiro-OMeTAD/Au 24.1 1.16 25.3 82.0 1.51 23.9 

Nature Energy 2021,  
2 

FTO/SnO
2
/FAMA/2D/spiro-OMeTAD/Au 24.6 1.19 24.7 83.9 1.55 24.4 

Nature Energy 2021,  
3 

FTO/SnO
2
/FAMA/2D/spiro-OMeTAD/Au 25.2 1.19 25.1 84.8 1.56 25.2 

Nature 2021,  
4 

FTO/mp-TiO
2
/FAMA/2D/spiro-OMeTAD/Au 25.6 1.17 26.2 81.8 1.53 25.2 

Nature 2021,  
5 

FTO/SnO
2
/FAMA/2D/spiro-OMeTAD/Au 25.8 1.19 25.7 83.2 1.50 25.5 

Nature 2021,  
6 

FTO/SnO
2
/FAMA/2D/spiro-OMeTAD/Au  25.7 1.18 26.1 83.8 1.53 25.4 

Science 2022,  
7 

FTO/SnO
2
/FAMA/2D/spiro-OMeTAD/Au 26.1 1.17 26.5 84.0 1.53 25.6 

Science 2022,  
8 

FTO/SnO2-KCl/FAMAPbI3/2D/spiro-OMeTAD/Au 26.1 1.18 25.7 86.2 1.48 25.7 
Nature 2023,  

9 

ITO/2PACz/CsFAMA/2D/C
60

/BCP/Ag 24.3 1.21 24.5 81.9 1.55 na 
Science 2022,  

10 

ITO/P3CT-N/CsFAMA/sulfur/C
60

/BCP/Ag 24.3 1.19 24.8 82.9 1.55 23.5 
Science 2022,  

11 

ITO/PTAA/CsFAMAPbIBr/C
60

/BCP/Ag 25.0 1.18 25.7 82.3 1.55 24.3 
Science 2022,  

12 

ITO/NiOx/CsFAMAPbIBr/PCBM/BCP/Ag 24.7 1.20 25.2 81.9 1.56 na 

Energy Environ. Sci. 

2022,  
13 

ITO/MeO-2PACz/RbCsFAMAPbIBr/LiF/C
60

/BCP/Ag 25.5 1.15 26.2 84.6 1.53 25.4 
Nature 2022,  

14 

ITO/2PACz/CsMAFAPbIBr/PEIE/LiF/C
60

/SnOx/Ag 24.3 1.17 25.0 83.3 1.55 24.2 
Joule 2022,  

15 

ITO/Me-4PACz/CsFAMA/Me-

4PACz/LiF/C60/BCP/Ag 
24.5 1.19 24.8 83.1 1.55 na 

Nature Energy 2023,  
16 

ITO/MeO-2PACz/CsMAFAPbIBr/2D/C
60

/BCP/Ag 24.6 1.18 24.8 84.3 1.55 24.2 
Science 2023,  

17 

ITO/MPA-CPA/CsMAFAPbIBr/2D/C
60

/BCP/Ag 25.2 1.20 24.8 84.5 1.56 25.4 
Science 2023,  

18 

ITO/DMAcPA/CsFAMAPbIBr/PCBM/BCP/Ag 25.9 1.19 25.7 84.9 1.54 25.4 Nature 2023,   
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Supplementary note 1.  

The first onset between the ohmic contact and the trap-induced regime is expressed as the trap limit voltage 

(VTFL) from SCLC plots in Extended Data Fig. 6c–d, where the density of trap states (Nt) can be calculated 

following the Mott-Gurney’s equation:  

𝑁 =  
2𝑉 𝜀 𝜀

𝑒𝐿
 

where ε0, ε, e, and L are vacuum permittivity, perovskite dielectric constant related to the composition, 

elementary charge of the electron, and perovskite thickness. The relative dielectric of FAPbI3 perovskite is 

around 47. We obtained that the double-side 2D/3D perovskite passivation films show a lower Nt for both 

electron- and hole-only devices (around 2.94 × 1015 cm-3 and 3.10 × 1015 cm-3, respectively) compared to 

control perovskite films around 7.40 × 1015 cm-3.  

 

We also performed thermal admittance spectroscopy (TAS) to elucidate the distribution of trap states in the 

perovskite layers (see Extended Data Fig. 6e). It shows tDOS (denoted as Nt) with respect to energetic 

defect levels from TAS, which were obtained from the relation: Nt (Eω )=-(Vbi .dCω )/(qW kB T.dω), where C 

is the capacitance, ω is the angular frequency, q is the elementary charge, kB is Boltzmann’s constant, Vbi 

is built-in voltage, and T is the temperature. This technique has been widely used and effectively quantifies 

the distribution of shallow and deep levels of defect in the perovskite thin films. 

 

 
 
 
 
 
 
 
 
 

19 

ITO/NiOx/PTAA/Al2Ox/2D/CsFAPbI3/PCBM/BCP/Ag 25.1 1.17 26.2 82.2 1.50 24.6 
Nature Energy 2023,  

20 

ITO/Me-4PACz/Al2O3/CsFAMAPbIBr/C
60

/BCP/Ag 25.5 1.21 25.1 84.4 1.55 24.7 
Science 2023,  

21 

ITO/2PACz/2D/CsMAFAPbI3/2D/C
60

/BCP/Ag 25.6 1.19 24.9 85.9 1.53 25.0 This work 
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