ENERGY HARVESTING

In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production

Yijin Wang^{1,2}, Youzi Zhang^{1,2}, Xu Xin^{1,2}, Jiabao Yang^{1,2}, Maohuai Wang³, Ruiling Wang^{1,2}, Peng Guo^{1,2}, Wenjing Huang⁴, Ana Jorge Sobrido⁵, Bingqing Wei⁶, Xuanhua Li^{1,2}*

High-performance thermogalvanic cells have the potential to convert thermal energy into electricity, but their effectiveness is limited by the low concentration difference of redox ions. We report an in situ photocatalytically enhanced redox reaction that generates hydrogen and oxygen to realize a continuous concentration gradient of redox ions in thermogalvanic devices. A linear relation between thermopower and hydrogen production rate was established as an essential design principle for devices. The system exhibited a thermopower of 8.2 millivolts per kelvin and a solar-to-hydrogen efficiency of up to 0.4%. A large-area generator (112 square centimeters) consisting of 36 units yielded an open-circuit voltage of 4.4 volts and a power of 20.1 milliwatts, as well 0.5 millimoles of hydrogen and 0.2 millimoles of oxygen after 6 hours of outdoor operation.

hermal energy (heat fluxes of 0 C° to 100 C° above ambient) can come from a variety of natural and industrial processes, including solar and geothermal energy, transportation, manufacturing, electronics, and biological entities (1-4). Heat can be converted into electrical energy by using thermoelectric technologies in combination with solar illumination, but conventional thermoelectric technologies are limited by their low thermopower of microvolts per kelvin ($\mu V K^{-1}$) (5–8). Thermogalvanic and thermodiffusion cells are two alternatives that offer high thermopower of millivolts per degree (mV K⁻¹) and enable a scalable route for directly converting heat to electricity (9-11). Thermodiffusion cells based on the thermodiffusion effect of ions (ΔD) have been reported to have a considerable thermopower of 24 mV K⁻¹, but their discontinuous electrical output has made them unreliable for practical applications (12, 13). By contrast, thermogalvanic cells (TGCs) generate continuous electric power by operating under a temperature difference (ΔT), which hold promise for practical applications (14). Previous studies have reported a thermopower of 3.7 mV K⁻¹ and a normalized power density $(P_{\text{max}}/\Delta T^2)$ of $6.8 \text{ mW} \text{ m}^{-2} \text{ K}^{-2}$, obtained from the heat provided by an ideal laboratory heater and cooler plates (1), whereas a thermopower of 1.3 mV K⁻¹ and a $P_{\text{max}}/\Delta T^2$ of 0.03 mW m⁻² K⁻² was ob-

*Corresponding author. Email: lixh32@nwpu.edu.cn

tained with solar thermal energy devices (15). We report an in situ–enhanced thermopower of 8.2 mV K⁻¹ and a $P_{\rm max}/\Delta T^2$ of 8.5 mW m⁻² K⁻² in a TGC (3.14 cm²) for harvesting solar thermal energy by using a photocatalytic water splitting process with simultaneous hydrogen (H₂, 11.3 µmol hour⁻¹) and stoichiometric oxygen production (O₂, 5.5 µmol hour⁻¹).

Thermopower is associated with the solventdependent entropy difference (ΔS) between redox ions and the concentration difference (ΔC) of redox ions between hot and cold sides (2, 16, 17). Thermopower can be enhanced by increasing ΔS of the redox ions. For example, a polymer network bonded with ferrocyanide (FeCN⁴⁻) increased ΔS to achieve a thermopower of 1.7 mV K⁻¹ (18). Introducing the acrylic quaternary ammonium monomer into the Fe³⁺/Fe²⁺ electrolyte to adjust the redox couple's solvation shells led to a larger ΔS with an enhanced thermopower of 2.0 mV K⁻¹ (19). However, owing to the spontaneous diffusion of redox ions into a homogeneous state, the ΔC of these TGCs is thermodynamically unstable and decreases to near zero (Fig. 1A) (20-22). Guanidinium cations can selectively induce the crystallization of FeCN^{4–} ions and improve the ΔC between hot and cold sides while leaving the concentration of ferricyanide (FeCN³⁻) unchanged on both hot and cold sides. This approach resulted in a limited ΔC and poor thermopower of 3.7 mV K^{-1} (1). Therefore, the construction of a high and continuous ΔC for both redox ions between the hot and cold sides and interpretation of the intrinsic ΔC modulation mechanism constitute a tremendous challenge.

We report the design of an in situ photocatalytically enhanced thermogalvanic device that can boost the thermopower to 8.2 mV K⁻¹ and provide solar-to-hydrogen (STH) efficiency of up to 0.4% (Fig. 1B). An O₂-evolution photocatalyst (OEP) aided the forward reaction from FeCN³⁻ to FeCN⁴⁻ and facilitated H₂O to O₂ production (23), resulting in a high FeCN⁴⁻ concentration on the hot side. The H2-evolu Check for photocatalyst (HEP) converted the FeCN FeCN³⁻ and facilitated H₂ production from H₂O (24), increasing the amount of $FeCN^{3-}$ on the cold side. A high local concentration of FeCN4near the hot side thermodynamically enhanced the oxidation reaction $\text{FeCN}^{4-} \rightarrow \text{FeCN}^{3-} + e^{-}$ with more electrons transferred to the hot electrode, whereas a high local concentration of FeCN³⁻ near the cold side thermodynamically enhanced the reduction reaction FeCN³⁻⁺ $e^- \rightarrow FeCN^{4-}$ with more electrons attracted from the cold electrode, enabling a continuous reaction to produce a high voltage. As the photocatalytic reaction proceeded, a H⁺ concentration gradient was also formed within the system. Thus, the thermopower of the photocatalytically enhanced TGC was further increased by enhancing ΔC of FeCN^{4–}, FeCN^{3–}, and H⁺ along with the improved ΔS .

Cell fabrication and $\Delta \textbf{C}$ construction

We constructed an integrated system using a multistep polymerization method (Fig. 1C; see the Experiments section for details). Polyacrylic acid (PAA) was chosen as the matrix given its simple synthesis and low cost and was filled with water to ensure ion migration and photocatalytic reaction. We then added $FeCN^{4-/3-}$ to the PAA precursor to serve as redox ions for the thermogalvanic reaction. Oxygen vacancies in WO₃ photocatalysts (O_v-WO₃) with CoO_x and sulfur vacancies in ZnIn₂S₄ photocatalysts (S_v-ZIS) with Pt were introduced into the upper and lower layers of the PAA precursor, respectively, to serve as an OEP and HEP, respectively (Fig. 1, D and E). The introduction of vacancies in the photocatalysts can enhance the charge transport and improve the photocatalytic efficiency (fig. S1, E and F), which is consistent with our previous report (25). CoO_x , as an oxygen production cocatalyst, was predeposited on the surfaces of O_v-WO₃ by a calcination method, whereas Pt, as a hydrogen production cocatalyst, was predecorated on the surfaces of S_v-ZIS by a reduction method. Cocatalysts can increase the driving force for extracting carriers and provide photocatalytic active sites to boost the photocatalytic efficiency (fig. S1, E and F) (26). The pristine TGC was hereafter assigned to the PAA-FeCN^{4-/3-} complex. After O_v-WO₃ with CoO_x and S_v-ZIS with Pt were introduced into the TGC, we referred to the cell as the Ov-WO3/TGC/Sv-ZIS system. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to verify that the O_v-WO₃/TGC/S_v-ZIS system was successfully constructed (fig. S2), and Raman spectroscopy data suggested that FeCN^{4-/3-} was evenly distributed throughout the system. The depth of distribution for O_v-WO₃ and S_v-ZIS in the O_v-WO₃/TGC/S_v-ZIS system was 1 to 3 mm and 7 to 9 mm, respectively (fig. S3).

^IState Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China. ²Research and Development Institute of Northwestern Polytechnical University, Shenzhen 518057, P. R. China. ³Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China. ⁴School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. ⁵School of Engineering and Materials Science, Faculty of Science and Engineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK. ⁶Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA.

Downloaded from https://www.science.org at Dalian Institute of Chemical Physics, Cas on September 01, 2022

Fig. 1. In situ photocatalytically enhanced concentration gradient of redox ions in a TGC. (A and B) Schematic depiction of the thermogalvanic cell (TGC) and photocatalytically enhanced TGC. (C) Schematic illustration of the fabrication for the O_v -WO₃/TGC/S_v-ZIS system. FeCN^{4–} and FeCN^{3–} concentrations were 0.34 M and 0.26 M, respectively. (D and E) SEM images of (D) O_v -WO₃ with CoO_x and (E) S_v-ZIS with Pt. (F) Infrared thermal image of the O_v -WO₃/TGC/S_v-ZIS under 100 mW cm⁻² light irradiation at a 30° angle. (The

cold side was controlled at 298 K.) TGC denoted PAA-FeCN^{4-/3-}. (G) Absorption spectrum of the O_v-WO₃/TGC/S_v-ZIS. (H) Cyclic voltammetry (CV) curve of the O_v-WO₃/TGC/S_v-ZIS. (I and J) Real-time monitoring of FeCN^{4-/3-} through in situ Raman study for the hot and cold sides of the O_v-WO₃/TGC/S_v-ZIS under light irradiation (100 mW cm⁻²). (K) Time courses of FeCN⁴⁻ and FeCN³⁻ concentrations on the hot and cold sides of O_v-WO₃/TGC/S_v-ZIS under light irradiation (100 mW cm⁻²). Error bars represent the standard deviation of 10 repeated measurements.

We investigated ΔT by placing the system in water under light irradiation. The top of the O_v-WO₃/TGC/S_v-ZIS system absorbed light that was converted to heat, which created a 16.8 K temperature gradient (Fig. 1F). The O_v-WO₃/ TGC/S_v-ZIS system exhibited high light absorbance within the wavelength range of 300 to 1000 nm, which ensured that the photocatalytic process took place (Fig. 1G). Two redox peaks in the potential window of -0.28 to 0.28 V (versus Pt) were observed in the cyclic voltammetry curve that were attributed to the reduction of FeCN³⁻ to FeCN⁴⁻ and the oxidation of FeCN⁴⁻ to FeCN³⁻, respectively (*12*), confirming the continuous thermoelectric and photocatalytic reactions (Fig. 1H).

In situ Raman spectroscopy was used to monitor real-time changes in FeCN³⁻ and FeCN⁴⁻ concentrations for the O_v -WO₃/TGC/S_v-ZIS system under light irradiation (fig. S4) (27). Peaks observed at 2058 and 2091 cm⁻¹ were attributed

Fig. 2. Thermoelectric performances of the TGC and O_v-WO₃/TGC/S_v-ZIS. (**A**) Schematic diagram of the photocatalytically enhanced TGC under light irradiation. The cross-sectional area of the cell was 3.14 cm² with a radius of 1 cm. The distance between the two electrodes was 0.9 cm (upper electrode: transparent Au@Cu mesh; bottom electrode: Au@Cu foil). (**B**) V_{OC} response versus time curves of TGC and O_v-WO₃/TGC/S_v-ZIS for five cycles (reaction condition: 2 ml of pure water, 100 mW cm⁻² light irradiation). (**C**) Thermopowers of TGC and O_v-WO₃/

TGC/S_v-ZIS (relative contributions of $\Delta D + \Delta S$ and ΔC with photocatalysts to the enhanced thermopower). (**D**) Current-voltage curves and corresponding power densities of TGC (ΔT = 13.8 K) and O_v-WO₃/TGC/S_v-ZIS (ΔT = 16.8 K). (**E**) Hydrogen and oxygen evolution rates of TGC and O_v-WO₃/TGC/S_v-ZIS (reaction conditions: 3 mg of O_v-WO₃, 2.5 mg of S_v-ZIS, 100 mW cm⁻² light irradiation). (**F**) Comparison of the thermopower and normalized power density values for various TGCs (table S2). Error bars in (C) and (E) represent the standard deviation of 10 repeated measurements.

to the A_{Ig} and E_g modes of FeCN⁴⁻, respectively. An additional peak located at 2128 cm⁻¹ was observed, corresponding to FeCN³⁻ (Fig. 1I). Under light irradiation, the characteristic peak intensities of FeCN³⁻ and FeCN⁴⁻ on both sides of the TGC without photocatalysts remained unchanged. On the hot side of the O_v-WO₃/TGC/ S_v-ZIS system, with the aid of photocatalysts, the peak intensities of FeCN⁴⁻ and FeCN³⁻ gradually increased and decreased, respectively, with an increase in the illumination time. This observation indicated that the O_v -WO₃ photocatalysts converted FeCN³⁻ to FeCN⁴⁻ on the hot side. The peak intensities remained constant after 60 min, indicating that the distribution of FeCN³⁻ and FeCN⁴⁻ had reached a steady state. Similarly, on the cold side, the S_v-ZIS photocatalysts caused FeCN³⁻ peak intensities to gradually increase and FeCN⁴⁻ peak intensities to gradually decrease for up to 60 min (Fig. 1J). Ultraviolet-visible (UV-vis) absorption spectroscopy was used to measure the concentration changes during the time course of illumination (Fig. 1K and fig. S5) (1). The result showed that after 60 min of illumination, the ΔC of FeCN^{4–} and FeCN^{3–} between hot and cold sides was 0.44 mol liter⁻¹, and pH measurements showed a ΔC of H⁺ of 3.3×10^{-7} mol liter⁻¹ between hot and cold sides of the system (fig. S6).

Fig. 3. Validating the working principle of photocatalytically enhanced TGCs. (A) Schematic of the photocatalytically enhanced TGC of O_v -WO₃/TGC/S_v-ZIS. (**B** and **C**) Working principle of photocatalytically enhanced TGCs of O_v -WO₃/TGC/S_v-ZIS: (**B**) hot side and (**C**) cold side. (**D**) Relationship of thermopower and H₂ evolution rate in the photocatalytically enhanced TGCs. Error bars represent the standard deviation of 10 repeated measurements.

Thermoelectric performance

We evaluated the thermoelectric performance of TGC and Ov-WO3/TGC/Sv-ZIS by using a Au-coated Cu (Au@Cu) mesh with 91% transmittance as a transparent hot electrode and a Au@Cu foil as the cold electrode (Fig. 2A and fig. S7). When exposed to light irradiation (100 mW cm⁻²), the TGC and O_v-WO₃/TGC/S_v-ZIS showed ΔT of 13.8 and 16.8 K, respectively (fig. S8). The open-circuit voltage (V_{oc}) on the Ov-WO3/TGC/Sv-ZIS achieved 137 mV, much higher than that of TGC of only $37\ \mathrm{mV}$ (fig. S9). The $V_{\rm oc}$ of the O_v-WO₃/TGC/S_v-ZIS system was 131 mV after five cycles (Fig. 2B and fig. S10). Moreover, the thermopower (i.e., $\Delta V / \Delta T$) of O_v -WO₃/TGC/S_v-ZIS, driven by ΔD (the thermodiffusion effect of K⁺, FeCN^{4-/3-}, and H⁺),

 ΔS (the enhanced solvent-dependent entropy difference of $FeCN^{3-}/FeCN^{4-}$ and H^+/H_2), and ΔC (the concentration difference of FeCN³⁻, FeCN⁴⁻, and H⁺ between cold and hot sides), was 8.2 mV K⁻¹ and 3.0 times as high as that of TGC (2.7 mV K⁻¹), which was driven only by ΔD and ΔS contributions (18) (Fig. 2C and supplementary note S1). For Ov-WO3/TGC/Sv-ZIS, only 8% of the enhanced thermopower was contributed by ΔD and ΔS versus 92% by ΔC (figs. S11 and S12 and table S1). The optimized amounts of FeCN3-, FeCN4-, Ov-WO₃, and S_v-ZIS that resulted in the largest $V_{\rm oc}$ values were 0.26 mol liter⁻¹, 0.34 mol liter⁻¹, 3 mg, and 2.5 mg, respectively (fig. S13). The thermopower and light intensity were positively correlated (fig. S14). The thermopower

was also dependent on the location of the photocatalysts (fig. S15).

The short-circuit current density, the maximum power density ($P_{\rm max}$), and the normalized power density ($P_{\rm max}/\Delta T^2$) of O_v-WO₃/TGC/S_v-ZIS were ~ 70 A m⁻², 2398 mW m⁻², and 8.5 mW m⁻² K⁻², respectively (Fig. 2D). Furthermore, the figures of merit (*ZT*) and Carnot-relative efficiency ($\eta_{\rm r}$) for O_v-WO₃/TGC/S_v-ZIS were calculated to be 0.17 and 4.91%, respectively, whereas the values for TGC were much lower, at 0.02 and 0.47%, respectively. The thermal and electrical conductivities of the systems with and without catalysts were unchanged (fig. S16). The H₂ and O₂ photoproduction rates of the O_v-WO₃/TGC/S_v-ZIS system were 11.3 and 5.5 µmol hour⁻¹, respectively (Fig. 2E).

Fig. 4. A large-area photocatalytically enhanced TGC. (A) Schematic drawing of a large-area photocatalytically enhanced thermogalvanic device with nine units in series (28 cm^{-2}). (**B** and **C**) (B) Voltage generated and (C) amount of evolved gases from a large-area photocatalytically enhanced thermogalvanic device with nine units in series (28 cm^{-2}) under light illumination (reaction conditions: 27 mg of O_v-WO₃, 22.5 mg of S_v-ZIS, 18 ml of pure water, 100 mW cm⁻² light irradiation). Error bars indicate the standard deviation of three measurements. (**D**) Schematic drawing of a large-area photocatalytically enhanced

thermogalvanic device with 36 units in series (112 cm⁻²) under the natural sunlight condition. (**E**) Voltage (black), power (green), solar intensity (red), and amount of evolved gases for a large-area photocatalytically enhanced thermogalvanic device with 36 units in series (112 cm⁻²) under the natural sunlight condition from 10:00 to 16:00 (7 July 2022) at Northwestern Polytechnical University of Xi'an (reaction conditions: 108 mg O_V-WO₃, 90 mg of S_V-ZIS, 72 ml of pure water). Error bars indicate the standard deviation of the three independent measurements on the same date.

 18 O isotope–labeled photocatalytic measurements demonstrated that the detected O_2 was the product of water splitting (figs. S17 and S18).

The O_v-WO₃/TGC/S_v-ZIS system demonstrated a photocatalytically enhanced thermopower of 8.2 mV K⁻¹ versus that of other reported TGCs (Fig. 2F and table S2) (*1*, *2*, *8*, *9*, *15*, *16*, *18*, *19*, *28*–42). The normalized power density of 8.5 mW m⁻² K⁻² also exceeded that of other TGCs. The STH energy conversion efficiency was 0.4% (table S3), comparable to that of other reported photocatalysts with aqueous redox mediators (table S4).

Validating the working principle

A working principle for this photocatalytically enhanced thermopower of the system was proposed (Fig. 3A). The band structures for the O_v -WO₃ and S_v -ZIS photocatalysts were determined using UV-vis diffuse reflectance spectroscopy and UV photoelectron spectra (fig. S19). Under light illumination, photogenerated electrons with sufficient energy were excited from the valence band maximum (VBM) of O_v -WO₃ and S_v -ZIS to the conduction band minimum (CBM) of O_v -WO₃ and S_v -ZIS, respectively, and holes were generated on the

VBM of O_v-WO₃ and S_v-ZIS (Fig. 3, B and C). The electrons in the CBM of O_v-WO₃ on the hot side facilitated the forward reaction from FeCN³⁻ to FeCN⁴⁻ because the CBM of O_v-WO₃ was higher than the redox potential of FeCN^{4-/3-} resulting in a high concentration of FeCN4ions (Fig. 3B). The band alignment of O_v-WO₃ and CoO_x cocatalysts allowed holes to be efficiently extracted from the VBM of Ov-WO3 to CoO_x cocatalysts through the built-in electric field at the interface, which drove oxygen production (figs. S19 and S20). On the cold side, the holes in the VBM of S_v-ZIS increased the amount of FeCN³⁻ ions by converting FeCN⁴⁻ to FeCN³⁻ ions (the VBM of Sv-ZIS was lower than the redox potential of $FeCN^{4-/3-}$) (Fig. 3C). The Pt cocatalysts served as an electron trap and attracted electrons from the CBM of S_v-ZIS through a Schottky junction (Pt/S_v-ZIS) and substantially facilitated H₂ production (figs. S19 and S20). As the O_2 and H_2 evolution reactions proceeded, H⁺ and OH⁻ were generated on the hot and cold sides of the system, respectively (Fig. 3, B and C). Because of the protonation and deprotonation processes in the PAA matrix and the H⁺ thermodiffusion,

only a small ΔC of H⁺ occurred between the hot and cold sides of the system (fig. S21 and supplementary note S2).

A thermogalvanic reaction also occurred in the system (Fig. 3A). Because FeCN⁴⁻ ions have a higher charge density and can form a more condensed hydration shell, they exhibited lower thermodynamic entropy compared with FeCN3ions (2). When a temperature gradient of 16.8 K was formed under light illumination, the high local concentration of FeCN⁴⁻ near the hot electrode thermodynamically enhanced the oxidation reaction $FeCN^{4-} \rightarrow FeCN^{3-} + e^{-}$ and resulted in the transfer of more electrons to the hot electrode (Fig. 3B). Similarly, the high local concentration of FeCN³⁻ near the cold electrode thermodynamically enhanced the reduction reaction $FeCN^{3-} + e^- \rightarrow FeCN^{4-}$ and attracted more electrons from the cold electrode (Fig. 3C). This continuous reaction facilitated the generation of a high voltage. The concentration gradient of H⁺ that formed within the system had an opposing effect on the increase in thermopower of FeCN^{4-/3-} (Fig. 3A). Because of its small ΔC , the contribution of H^+ was much less than that of FeCN^{4-/3-} (figs.

S11 and S12). Therefore, the high local concentration of FeCN⁴⁻ and FeCN³⁻ (i.e., extended ΔC) induced by photocatalytic reaction supported the increased thermopower of O_v-WO₃/TGC/S_v-ZIS. By coupling the ΔD , ΔS , and ΔC of FeCN⁴⁻ and FeCN³⁻, the high thermopower of the system was achieved.

On the basis of the above work principle and the Nernst equation between the thermopower and redox concentration (15), a universal theoretical function relation between thermopower (S_e) and H₂ production rate (*x*) could be established for photocatalytically enhanced TGCs (supplementary note S3)

$$\begin{split} S_{\rm e} &= S_{\Delta D} + S_{\Delta S}^{\rm FeCN^{4-/3-}} + \frac{R}{nF} \left(\ln C_0^{\rm FeCN^{4-}} - \ln C_0^{\rm FeCN^{3-}} \right) \\ &+ \frac{2R}{nF\Delta T} (T_{\rm hot} + T_{\rm cold}) \left(\frac{1}{C_0^{\rm FeCN^{4-}} V_{\rm c}} + \frac{1}{C_0^{\rm FeCN^{3-}} V_{\rm c}} \right) x + S_{\rm e}^{\rm H^+} \end{split}$$

where $S_{\Delta D}$ is the thermodiffusion thermopower of mobile ions (i.e., K⁺, FeCN^{4-/3-}, H⁺) and $S_{\Delta S}^{\text{FeCN}^{4-/3-}}$ is the thermopower driven by only ΔS of FeCN⁴⁻ and FeCN³⁻. $S_{\rho}^{\text{H}^+}$ is thermopower driven by the H⁺ concentration gradient. $V_{\rm c}$ is the volume of the electrolyte solution of the hydrogen-evolution photocatalyst. $C_0^{FeCN^4}$ and $C_0^{\text{FeCN}^{3-}}$ are the initial concentrations of FeCN⁴⁻ and FeCN³⁻, respectively. *F*, *n*, and *R* are the Faraday constant, the number of electrons transferred during a redox reaction, and the ideal gas constant, respectively, and $T_{\rm hot}$ and $T_{\rm cold}$ are the temperatures of the hot and cold electrodes, respectively. These results showed a linear relation between the thermopower and H_2 evolution rate.

In our photocatalytically enhanced thermogalvanic system, Eq. 2 was derived from Eq. 1 by substituting the corresponding experimental parameter values (fig. S22)

$$S_{
m e}=2.7+0.3x$$

(2)

To validate the formula's universality, a series of alternative photocatalysts with different photocatalytic properties, including BiVO₄/ TGC/ZrO₂-TaON and Cs-WO₃/TGC/SrTiO₃:Rh, were measured under the same experimental parameters in terms of thermopowers and H₂ evolution rates (fig. S23). Along with the enhanced H₂ production rates, their thermopowers revealed the linear increase and conformed to Eq. 2 (Fig. 3D). These results convincingly proved the universality of our strategy to serve as essential design principles for photocatalytically enhanced thermogalvanic devices.

Large-area thermogalvanic devices

A large prototype module (28 cm²) containing nine units with a series connection was prepared that could reach a maximum $V_{\rm oc}$ of 1.2 V under 100 mW cm⁻² light irradiation (Fig. 4, A and B). After 3 hours of irradiation, H₂ and O₂ production reached 98 and 48 µmol, re-

spectively (Fig. 4C). Outdoor experiments with the device were performed under natural sunlight. An array of the Ov-WO3/TGC/Sv-ZIS modules, with an area of 112 cm², was assembled with 36 units in series that self-floated on flowing water (Fig. 4D). The natural sunlight presented a time-dependent variability in solar intensity and ambient temperature from 10:00 (the system reached a relatively stable state at this time) to 16:00 (Xi'an, 7 July 2022) (fig. S24). A $V_{\rm oc}$ value of 4.4 V and a power value of 20.1 mW were generated, indicating the practical application of the photocatalytically enhanced thermogalvanic technology (movie S1). After 6 hours of reaction, 0.5 mmol of H₂ and 0.2 mmol of O_2 were collected (Fig. 4E). The prototype system demonstrated a practical and sustainable way to generate electricity with H_2 and O_2 production simultaneously.

Conclusion

The photocatalytically enhanced thermogalvanic devices were demonstrated through an in situ-induced photocatalytic process that produced a continuous concentration gradient ΔC of FeCN^{4–} and FeCN^{3–} ions on both hot and cold sides. The system displayed a photocatalytically enhanced thermopower of 8.2 mV K⁻¹ accompanied by simultaneous solar-driven water splitting with an STH efficiency of up to 0.4%. This pioneering system combines electricity generation with H₂ and O₂ production by harnessing energy from solar radiation. This work has also demonstrated the viability of the technology at a larger scale and under natural conditions, making it a promising method for diverse environmental energy conversion using solar-thermal energy.

REFERENCES AND NOTES

- 1. B. Yu et al., Science 370, 342–346 (2020).
- 2. J. Duan et al., Nat. Commun. 9, 5146-5153 (2018).
- 3. K. Chen et al., Science 367, 555-559 (2020).
- 4. S. Ohno et al., Joule 2, 141–154 (2018).
- H. Wang et al., Adv. Energy Mater. 11, 2100481–2100486 (2021).
- D. Kraemer et al., Nat. Energy 1, 16153–16160 (2016).
- Y. Li et al., Adv. Energy Mater. 12, 2103666–2103675 (2022).
- 8. T. Kim et al., Nano Energy 31, 160–167 (2017).
- W. Gao, Z. Lei, W. Chen, Y. Chen, ACS Nano 16, 8347–8357 (2022).
- Y. Liu et al., Energy Environ. Sci. 15, 3670–3687 (2022).
- 11. Y. Zheng et al., Chem. Soc. Rev. 50, 9022–9054 (2021).
- 12. C. G. Han et al., Science **368**, 1091–1098 (2020).
- 13. T. Li et al., Nat. Mater. 18, 608-613 (2019).
- 14. Y. Han, J. Zhang, R. Hu, D. Xu, Sci. Adv. 8, eabl5318 (2022).
- J. Shen et al., J. Mater. Chem. A Mater. Energy Sustain. 10, 7785–7791 (2022).
- H. Zhou, T. Yamada, N. Kimizuka, J. Am. Chem. Soc. 138, 10502–10507 (2016).
- M. Li, M. Hong, M. Dargusch, J. Zou, Z.-G. Chen, *Trends Chem.* 3, 561–574 (2021).
- 18. Z. Lei, W. Gao, P. Wu, Joule 5, 2211-2222 (2021).
- W. Gao, Z. Lei, C. Zhang, X. Liu, Y. Chen, Adv. Funct. Mater. 31, 2104071–2104078 (2021).

- 20. T. Ding et al., Adv. Energy Mater. 11, 2102219–2102227 (2021).
- 21. Y. Liu et al., Adv. Sci. (Weinh.) 8, 2100669–2100681 (2021).
- Y. Liu et al., Adv. Energy Mater. 10, 2002539–2002548 (2020).
- 23. Y. Qi et al., Nat. Commun. 13, 484-492 (2022).
- 24. Y. Qi et al., Joule 2, 2393–2402 (2018).
- 25. Y. Wang et al., Adv. Energy Mater. 11, 2102452–2102460 (2021).
- 26. Z. Wang et al., Nat. Commun. 12, 1005–1013 (2021).
- 27. S. Guo et al., Adv. Funct. Mater. **30**, 2003035–2003043 (2020).
- Y. Liu et al., J. Mater. Chem. A Mater. Energy Sustain. 10, 19690–19698 (2022).
- C. Bai et al., Nano Energy 100, 107449–107457 (2022).
- C. Bai et al., ACS Appl. Mater. Interfaces 13, 37316–37322 (2021).
- P. F. Salazar, S. T. Stephens, A. H. Kazim, J. M. Pringle, B. A. Cola, J. Mater. Chem. A Mater. Energy Sustain. 2, 20676–20682 (2014).
- 32. Y. Yang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 17011–17016 (2014).
- T. J. Kang et al., Adv. Funct. Mater. 22, 477–489 (2012).
- 34. G. Li et al., Adv. Mater. 31, e1901403 (2019).
- J. H. Kim, T. J. Kang, ACS Appl. Mater. Interfaces 11, 28894–28899 (2019).
- 36. R. Hu et al., Nano Lett. 10, 838-846 (2010).
- J. H. Lee, G. Shin, J. Y. Baek, T. J. Kang, ACS Appl. Mater. Interfaces 13, 21157–21165 (2021).
- L. Zhang et al., Adv. Mater. 29, 1605652–1605658 (2017).
- C. Xu, Y. Sun, J. Zhang, W. Xu, H. Tian, Adv. Energy Mater. 12, 2201542 (2022).
- B. Yu et al., Nano Energy 93, 106795–106803 (2022).
 D. Zhang et al., Energy Environ. Sci. 15, 2974–2982
- Zhang et al., Energy Environ. Sci. 13, 2974–2962 (2022).
 M. S. Romano et al., Adv. Mater. 25, 6602–6606
- (2013).

ACKNOWLEDGMENTS

The authors thank the members of the Analytical & Testing Center of Northwestern Polytechnical University for their help with TEM characterization. Funding: X.L. acknowledges financial support from the National Natural Science Foundation of China (22261142666, 52172237); the Science, Technology, and Innovation Commission of Shenzhen Municipality (JCYJ008103417036); the Shaanxi Science Fund for Distinguished Young Scholars (2022JC-21); the Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (grant no. 2021-0Z-02); and the Fundamental Research Funds for the Central Universities (3102019JC005). Author contributions: Conceptualization: X.L. and Y.W.; Methodology: X.L. and Y.W.; Investigation: X.L., Y.W., Y.Z., X.X., J.Y., M.W., R.W., P.G., and W.H.; Visualization: X.L. and Y.W.; Funding acquisition: X.L.; Project administration: X.L.; Supervision: X.L.; Writing - original draft: X.L., Y.W., A.J.S., and B.W.; Writing review and editing: X.L., Y.W., A.J.S., and B.W. Competing interests: The authors declare that they have no competing interests, and have no patent applications or pending or awarded patents to declare. Data and materials availability: All data are available in the main text or the supplementary materials. License information: Copyright © 2023 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science No claim to original US government works. https://www.sciencemag.org/ about/science-licenses-journal-article-reuse

SUPPLEMENTARY MATERIALS

science.org/doi/10.1126/science.adg0164 Materials and Methods Supplementary Text Figs. S1 to S24 Notes S1 to S3 Tables S1 to S4 References (43–59). Movie S1

Submitted 28 November 2022; resubmitted 15 March 2023 Accepted 16 May 2023 10.1126/science.adg0164

In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production

Yijin Wang, Youzi Zhang, Xu Xin, Jiabao Yang, Maohuai Wang, Ruiling Wang, Peng Guo, Wenjing Huang, Ana Jorge Sobrido, Bingqing Wei, and Xuanhua Li

Science, **381** (6655), . DOI: 10.1126/science.adg0164

Editor's summary

In thermogalvanic cells, temperature-driven concentration gradients of redox-active species create a potential difference that can produce electricity. Wang *et al.* show that for the redox couple Fe(CN)₆4- and Fe(CN)₆3- in a gel matrix, water-splitting photocatalysts that generated oxygen and hydrogen boosted the concentration gradients of the redox ions and added a proton gradient to the cell (see the Perspective by Yu and Duan). The cell had a thermopower of 82 millivolts per degree kelvin and also generated a hydrogen by-product. —Phil Szuromi

View the article online

https://www.science.org/doi/10.1126/science.adg0164 Permissions https://www.science.org/help/reprints-and-permissions

Use of this article is subject to the Terms of service

Science (ISSN) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW, Washington, DC 20005. The title Science is a registered trademark of AAAS.

Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works