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Two-dimensional (2D) hybrid perovskites have recently 
emerged as solution-processed semiconductors with unique 
physical properties that offer opportunities for optoelectron-

ics, spintronics and energy-conversion technologies of the future1–5. 
Most of the reported structures are formed by the chemical assem-
bly of stacks of nanometre-thick hybrid perovskite layers, separated 
by bulky insulating organic spacer cations such as alkylammonium 
or thienyl-, phenyl- and cyclohexyl-based monovalent cations and 
adopt a so-called Ruddlesden–Popper (RP) phase6–8. The compo-
sition of the organic moieties and the perovskite layer thickness 
(expressed by the n value in the chemical formula L2An–1BnX3n+1 
where L is the organic monovalent spacer; A is methylammonium 
(MA), formamidinium (FA) or Cs; B is a divalent metal such as Pb 
or Sn; and X is a halide: I, Br or Cl) define the crystal phase, struc-
tural, mechanical, electronic and optical properties of resulting 2D 
perovskites8–17.

Recent work by Kanatzidis and coworkers demonstrated that 
using spacer dications, such as piperidinium (4AMP) or a mixture 
of small cations such as guanidinium (GA) and MA instead of the 
well-known butylammonium (BA), leads to the formation of 2D 
hybrid perovskites with different crystal structures such as Dion–
Jacobson (DJ) and alternating cation interlayer (ACI), in which 
the interlayer distance is much smaller than in the well-studied 

RP7,8,18,19. For iodine perovskites, which are the most suitable for 
single-junction solar cells, the I–I distance can be as small as 4 Å 
compared to 7 Å with BA. Moreover, the stacking of the perovskite 
layers and the use of the short cation (4AMP) in the DJ structure 
impose a perfectly eclipsed alignment on the layer stacking, result-
ing in weak but notable electronic coupling between the iodine 
atoms directly facing each other across the organic interlayer18,19. 
Due to the recombination of carriers at the organic–inorganic inter-
faces and imperfect crystal packing in thin films, the 2D hybrid 
perovskites exhibit inferior charge transport properties as compared 
to their three-dimensional (3D) counterparts, which has a direct 
impact on the efficiency of photovoltaic devices12,20,21. Tailoring 
interlayer interactions by using suitable organic cations or external 
mechanical stress has been predicted to enhance the electronic cou-
pling between perovskite layers across the organic spacer and signif-
icantly enhance the charge transport in 2D hybrid perovskites9,22–27. 
This approach would enable the synthesis of thicker films (>400 nm, 
more like 3D films), increase the absorption and bridge the effi-
ciency gap between the 2D and 3D perovskites20.

Here, we show that continuous illumination of DJ and ACI 
2D hybrid perovskites results in a lattice contraction with a 0.4% 
decrease in the lattice parameter of the perovskite layer plane 
(in-plane) direction and >1% decrease in the lattice parameter of 
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the out-of-plane direction. In-situ X-ray photoelectron spectros-
copy (XPS) measurements performed on single crystals and thin 
films under continuous illumination reveal that upon illumination, 
the iodide ions become electron poor (more positively charged or 
oxidized), which triggers an enhancement of the I–I interactions 
across an organic barrier. This decreases the effective interlayer 
distance and results in a threefold, step-like increase in the charge 
carrier mobility. Importantly, the abrupt change in the mobility is 
perfectly in sync with the onset of lattice contraction in the in-situ 
device grazing incident wide-angle X-ray scattering (GIWAXS). 
Furthermore, light-intensity-dependent GIWAXS and mobility 
measurements elucidate a percolation-based mechanism, which 
explains the threefold increase in mobility and the observed tim-
escale of the light-induced changes and the subsequent relaxation. 
Theoretical calculations reveal that the localization of holes on the 
iodine atoms results in larger electronic dispersion along the stack-
ing axis, which is consistent with our experimental observation of 
enhanced charge transport. The improved charge transport results 
in a large increase in the efficiency of a DJ-based photovoltaic 
device from 15.6% to 18.3%, mainly due to improved charge col-
lection, reflected as an increase in the fill factor and open-circuit 
voltage of the solar cell.

Structural characterization of 2D perovskite under light
The 2D perovskites were exposed to the light from a solar simulator 
(air mass 1.5G) while their structure was monitored using GIWAXS 
as a function of illumination time (Fig. 1a). Figure 1a illustrates the 
experimental set-up and the corresponding GIWAXS pattern of 
DJ 4AMP-MA2Pb3I10 (DJ n = 3) perovskite crystal powders, which 
shows concentric rings with constant scattering q (Å-1) radius corre-
sponding to the Bragg reflections of DJ n = 3 lattice planes identified 
by their Miller indices (Fig. 1b, filled curve; structure of the DJ n = 3 
in Fig. 1c; and complete q range is shown in Supplementary Fig. 1). 
Under constant light illumination, all the diffraction peaks decrease 
in intensity and shift to higher q values (Fig. 1b). The light-induced 
increase in the q value of the diffraction is attributed to a continuous 
and reversible lattice contraction in all directions. The lattice con-
traction corresponds to a 2% reduction in the volume of the lattice 
unit cell after 51 minutes of illumination (Supplementary Table 1). 
Detailed analysis of the evolution of the diffraction peaks (results 
for the 300 and 011 peaks in Supplementary Fig. 2a,b) yields a 
monotonic decrease of the out-of-plane and in-plane lattice param-
eters (Fig. 1d and Supplementary Fig. 2). After 51 minutes of illu-
mination, we observed a contraction of the lattice by 1.0% (23.12 
to 22.90 Å) and 0.56% (8.847 to 8.803 Å) in the out-of-plane and 
in-plane directions, respectively (Fig. 1e). These relative changes 
in the lattice parameter values over time, which can be interpreted 
as the normal strain induced in the lattice by light, reveal that the 
light-induced lattice contraction effect is significantly stronger in 
the direction of the stacking axis (out-of-plane) as compared to 
the in-plane direction. In addition, we also observed an increase in 
the intensity of the diffraction peaks stemming from a new poly-
morph of the DJ n = 3 (labelled ‘P’ in Supplementary Fig. 2a,b), 
which exhibits a first-order contraction of the lattice volume by 
about 7.0% as compared to the nominal DJ n = 3 phase before illu-
mination. However, we emphasize that the latter effect was observed 
only on powder samples and absent in DJ n = 3 single crystals  
(Fig. 1f) or thin films integrated into solar cells (Fig. 5). These results 
imply that sample preparation and morphology, as well as edges and 
surfaces might play an important role in the manifestation of the 
contracted polymorph. By contrast, the continuous and reversible 
light-induced lattice contraction of the original perovskite phase is 
an intrinsic phenomenon observed for all types of samples and is a 
bulk property.

Next, to verify that the light-activated contraction phenom-
enon reported in Fig. 1 is purely light induced, we performed the 

following analysis. First, we confirmed that our samples did not 
exhibit any light-induced irreversible degradation, as the total 
intensity of the GIWAXS patterns remained constant during light 
illumination (Supplementary Fig. 2c) and the light-induced changes 
are reversible after placing the 2D perovskites in the dark for several 
hours (Fig. 1b and Supplementary Fig. 2a,b). Second, we excluded 
the possibility that the observed lattice contractions were due to 
heating by investigating the structural changes in DJ n = 3 as a func-
tion of temperature in the dark. The temperature dependence as 
illustrated in Fig. 1g (and Supplementary Fig. 3a–d) showed that the 
diffraction peaks shift to smaller q values with increasing tempera-
ture, which is a clear indication of a lattice expansion and is opposite 
to the light-induced results reported in Fig. 1b,d. In addition, above 
–40 °C, we observed the coexistence of the original phase and the 
new polymorph all the way up to 80 °C (Supplementary Fig. 3a,b). 
We note that coexistence between polymorphs, including phases 
with the same space groups, has been observed in 2D perovskites, 
and recent studies suggest that their transformation can be tuned by 
temperature and pressure9,24,25.

To understand how the light-induced structural changes 
observed in DJ n = 3 depend on its specific crystal structure, we 
investigated two other types of 2D perovskite structures (Fig. 2a): 
ACI perovskites (GAMA3Pb3I10, n = 3 and GAMA2Pb2I7, n = 2; 
Supplementary Fig. 4) and RP perovskites (BA2MA3Pb3I10, n = 3; 
Supplementary Fig. 5)7,19. We observed that both the ACI n = 2 
and n = 3 showed light-induced structural changes similar to the 
DJ n = 3. Surprisingly, the RP n = 3 exhibited no measurable struc-
tural changes after one hour of illumination. Figure 2b presents a 
quantitative comparison of both the in-plane and out-of-plane 
light-induced normal strain for all the 2D perovskite samples (also 
summarized in Supplementary Table 1). The in-plane compres-
sive strain showed a similar trend in both the DJ and ACI samples 
and reached values between –0.4% and –0.5%, respectively, after 
51 minutes of illumination. On the other hand, the out-of-plane 
strain amplitude increased at a much faster rate under continuous 
illumination and reached values between –0.6% and –1.0%, with 
DJ n = 3 exhibiting the largest compressive strain and ACI n = 3 the 
smallest one. We note that while the light did not induce any struc-
tural changes in the RP n = 3, we observed a lattice expansion upon 
heating in the RP samples in the dark (Supplementary Fig. 3), which 
further confirmed that light-induced temperature effects can be 
ignored in our in-situ GIWAXS experiments. Finally, similar to the 
DJ n = 3, both the ACI and RP 2D perovskites exhibited an increase 
in the polymorphic phase as a function of increasing temperature 
(Supplementary Fig. 4e,h,i). Nevertheless, these measurements sug-
gest that a correlation exists between the different structural phases 
of 2D perovskite and the effect of light-induced contraction.

Mechanism of light-activated interlayer contraction
To understand the mechanistic origin of the light-induced lattice 
contraction, we performed XPS measurements before and after light 
exposure on millimetre-sized DJ and RP single crystals (Fig. 2c,d). 
This allowed us to directly probe the chemical bonding states of the 
Pb 4f and I 3d electron core levels (Fig. 2c,d, left and right, respec-
tively). Our results showed a clear blue shift in the binding ener-
gies of both iodine and lead atoms in the DJ sample. The blue shift 
in the bonding states indicates the loss of electrons (or oxidation) 
of the iodide ion. The more positively charged iodides across the 
interlayer can undergo an oxidative coupling, which results in the 
out-of-plane contraction and a decrease in the effective interlayer 
distance. We note that this mechanism is akin to the well-known 
formation of polyiodides, specifically oxidative coupling of iodide 
ions to create In

– molecular weakly bound polyiodide oligomers28. 
A similar shift was also observed for Pb core levels; however, the 
shift in energy for the iodide core levels was larger (0.25 ± 0.002 eV 
versus 0.20 ± 0.006 eV, iodide versus lead, respectively). This is 
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consistent with the fact that electrons on the Pb bonding states are 
quickly delocalized and as a result experience a secondary oxida-
tive environment29,30. In sharp contrast to the DJ perovskite, the RP 
system exhibited no measurable shift in the binding energies under 
light exposure (Fig. 2d). Moreover, the 3D structure resulted in a 
red shift in Pb and I core levels, consistent with previous reports 
(Supplementary Fig. 6a,b)31 and opposite to the trend observed for 
2D perovskites. These XPS trend measurements clearly imply that 
light-induced out-of-plane contraction is correlated to the inter-
layer iodide interactions in DJ and ACI 2D perovskites, in which 
the interlayer distance is the shortest.

Previous reports claim that the orbital nature of the valence band 
in the perovskites is antibonding in character and has a strong con-
tribution from the 6s2 states of the Pb2+ atoms as well as the filled 
p states from iodine atoms14,18,27. Therefore, light excitation across 
the bandgap involves the creation of holes via the depopulation of 
antibonding states with both Pb and I contributions in the valence 
band. Because of the proximity of the adjacent slabs enabled by the 

very short spacer cations, some holes can get trapped through the 
enhanced I–I weakly bonding interactions across the slabs, result-
ing in contraction along the out-of-plane direction. Moreover, 
a key requirement for this mechanism to be activated is that the 
I–I distance across the slabs must be short; therefore, this effect of 
light-activated interlayer contraction is observed only in DJ and 
ACI perovskites.

To gain a deeper insight into the mechanism proposed by the 
in-situ XPS measurements and to understand the impact of the 
out-of-plane light-induced contraction on the band structure, we 
performed first-principles calculations based on density functional 
theory (DFT) for 2D perovskites under various charged states (mod-
elling details in Methods). Our model confirmed that the lattice 
contraction stems from the accumulation of photo-generated holes 
in the bulk, which leads to a compressive strain of the perovskite 
superlattice through a decrease of the interlayer spacing (Fig. 3b 
and Supplementary Fig. 6c,d). DFT calculation also predicts that 
the light-induced effects are more prominent in the DJ versus ACI, 
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which confirms the fact that iodide interactions are stronger in the 
DJ perovskite with its shorter interlayer iodide distance (4.12 Å) 
compared to the ACI perovskite (4.46 Å; Supplementary Tables 3 
and 5). Furthermore, to mimic the enhancement of the inter-slab 
I–I bonds by the accumulation of holes on the iodides, we calcu-
lated the electronic band structure of the DJ perovskite as a function 
of positive charge carrier (hole) injection (Fig. 3c). Our simulation 
shows that after one- to two-hole injections, the curvature at the 
valance band maxima and conduction band minima exhibited a 
larger dispersion along the octahedra stacking axis (Γ–X) compared 
to the neutral case. This dispersion implies that a notable change in 
the charge carrier properties can be expected. Finally, we note that 
a positively charged RP perovskite is predicted to undergo a verti-
cal lattice contraction according to DFT calculations, therefore con-
firming that the absence of lattice contraction and XPS shifts (Fig. 
2b,d) is attributed to the lack of positive charge accumulation in the 
case of RP-phase 2D perovskites. This is reasonable because such 
accumulation requires the existence of short I–I in the structure to 
begin with. In fact, two pathways that can efficiently drive away the 
photo-generated charge carriers in the bulk of RP perovskites are 
via low-energy states at their edge surfaces, or by the quick forma-
tion of Wannier excitons32–34.

In-situ transport and device measurements
Motivated by the DFT band-structure calculations, which predict 
an increase in band dispersion upon light-induced contraction 
in the out-of-plane direction, the next logical step was to quan-
tify the impact of contraction on the electronic transport proper-
ties. We conducted in-situ space-charge-limited current (SCLC) 
measurements under continuous light illumination (Fig. 4a) by 
fabricating an electron-only device by sandwiching a DJ n = 3 2D 
perovskite thin film between indium tin oxide (ITO)/SnO2 and 

C60/Cu (fabrication process in the Methods). We first measured 
the current–voltage (J–V) characteristics of the device in the dark 
and observed two regimes (Supplementary Fig. 7a). At low volt-
ages, the J–V curve showed a linear dependence (J = αV) indicating 
an ohmic response. At higher voltages (>3 V), the linear response 
shifted towards a nonlinear regime (J = αV3) signalling a transition 
to a trap-filled limited (TFL) region (details of the fitting are in 
the Methods). These results agree well with previous reports21,35,36. 
Next, we exposed the device to constant 1 Sun light illumination. 
A new sublinear response (J = αV1/2) was observed in the J–V curve 
between the ohmic and TFL regions (Fig. 4a and Supplementary 
Fig 7b). We attribute this to the space-charge-limited photocur-
rent regime, where generated photocarrier and injected free carrier 
concentrations exceed the background charge carrier concentration 
and accumulate at one of the interfaces to create a space-charge 
build-up37,38. Nevertheless, we directly monitored the J–V trace of 
the electron device under light illumination, which is shown in Fig. 
4a. We observed a sudden jump in the J–V trace upon 10 minutes 
of light illumination. The conductivity analysis (extracted from 
the fit in the ohmic region) indicates that after 10 minutes of light 
illumination, a sigmoidal increase of conductivity occurred, from 
50 × 10−9 S cm−1 to 120 × 10−9 S cm−1 (Fig. 4b). Similarly, the carrier 
mobility increased from 0.5×10−2 cm2 V−1 s−1 to 1.5×10−2 cm2 V−1 s−1 
after 10 minutes of light soaking (Fig. 4c). These results suggest that 
the charge transport is significantly enhanced within the short time 
of 10 minutes, even though the effect of light-induced contraction 
had just initiated. The improvement in the charge transport proper-
ties is consistent with the increase in the out-of-plane dispersion 
predicted by DFT simulations and indicates the activation of the 
interlayer transport pathway. In fact, recent work by Ma et al. has 
shown that when reducing the length of the organic spacer cation, a 
new interlayer transport channel is created39.

Fig. 4 | Electron mobility as a function of light illumination. a, Evolution of the current–voltage trace for an electron-only device as a function of light 
illumination time at 1 Sun intensity. Three regions are indicated on the plot: ohmic, space-charge-limited photocurrent and TFL. Device schematic is 
shown as the inset. b,c, Corresponding changes in the conductivity (σ; b) and in the electron mobility (μe; c) as a function of light illumination. Error bars 
are shown for each point and are represented by the 5% fitting error. d, Light-intensity-dependent (in units of number of Suns) electron mobility SCLC 
measurements. e, Corresponding relationship between inverse t0, percolation threshold time and incident light intensity. Error bars are shown for each 
point and are represented by sampling time error. f, Electron mobility as a function of trapped photo-holes under different light intensities. The red line 
denotes the percolation threshold (Ct) for the photo-generated hole carriers.
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To gain deeper insight into the correlation between the 
light-induced contraction and the enhancement in charge trans-
port, we performed light-intensity-dependent GIWAXS and SCLC 
measurements, described below. GIWAXS measurements were 
performed on DJ n = 3 powders using two illumination intensi-
ties, 0.4 and 1.0 Sun (Supplementary Fig. 8a). Similar to the 1 Sun 
measurements shown in Fig. 1, lower-light-intensity illumina-
tion induces an anisotropic contraction for the out-of-plane and 
in-plane diffraction planes. However, we find that at 0.4 Sun, the 
magnitude of the strain was lower in both directions with –0.2% 
compressive strain in the out-of-plane direction and –0.1% strain 
in the in-plane direction. Moreover, the slope of the light-induced 
strain for both the directions was smaller than the 1 Sun case. Next, 
to build on our intensity-dependent GIWAXS results, we performed 
a flux-dependent SCLC measurement on an electron-only device. 
Our SCLC results reveal several interesting phenomena: (1) a sud-
den sigmoidal variation (a constant lower and upper limit) of the 
mobility as a function of time under constant light illumination at 

different light intensities (Fig. 4d); (2) a threefold increase of the 
mobility, which is independent of the light intensity (Fig. 4d); and 
(3) an inverse relationship between the time of nonlinear increase 
and the flux of light illumination (Fig. 4e). Analogous to the clas-
sical percolation theory for electrical conductivity in an inhomo-
geneous medium, the transition between low and high conductive 
states occurs when a percolation threshold is reached due to dop-
ing40,41. We propose that our system follows an equivalent concept 
in which the method of doping is the trapping/localization of 
photo-generated holes at the iodine sites (threshold).

The percolation model is explained in detail in the Supplementary 
Discussion. In summary, our results on the intensity-dependent 
GIWAXS and SCLC measurements combined with a percola-
tion model elucidate that there is a threshold number of iodine 
sites that need to be filled by the photo-generated holes to activate 
light-induced contraction and the subsequent increase in mobility 
(Fig. 4c). Furthermore, we performed a GIWAXS measurement on 
a DJ n = 3 perovskite thin film to probe the orientation of the grains 
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(Supplementary Fig. 9a). The diffraction results showed that the 
DJ perovskite thin film exhibited a mixed orientation with mostly 
preferential vertical orientation (perpendicular to the substrate) 
and some horizontal orientation along the in-plane direction (par-
allel to the substrate). This indicates that before light illumination, 
a large fraction of the photo-generated carriers is scattered off by 
the organic spacer cation due to the mixed arrangements of the 
inorganic perovskite layers2. However, when the number of trapped 
photo-generated holes equals the percolation threshold, interlayer 
transport is activated by the interlayer contraction (Fig. 4f). This 
enhances the overall mobility and can be seen by the percolation 
transition in the SCLC measurement.

In order to directly probe the impact of light-induced contrac-
tion on the performance of photovoltaic devices, we performed cor-
related structural (GIWAXS) measurements on planar, p–i–n solar 
cells using DJ n = 3 as the 2D perovskite in operando (Fig. 5a–c and 
Supplementary Fig. 9). Figure 5c shows the effective interlayer dis-
tance extracted from the GIWAXS measurements as a function of 
light illumination time. Similar to the single crystals and powder 
samples, thin films of DJ n = 3 also exhibit a light-induced aniso-
tropic compressive strain resulting in the contraction of the effec-
tive interlayer distance. Next, we observed a step-like increase in 
the open-circuit voltage (VOC) and fill factor (FF) after 10 minutes of 
illumination (Fig. 5b and Supplementary Fig. 9b). The increase in 
these parameters is concomitant with the onset of the light-induced 
strain in the perovskite films indicated by the red line at 10 minutes 
in Fig. 5c. We also emphasize that the sudden increase in the car-
rier mobility described in Fig. 4c also occurs at the same time point 
of 10 minutes. These correlated structure, transport and device 
data clearly imply that the drastic improvement in the device per-
formance is driven predominantly by the reduction of the effective 
interlayer distance resulting in the increase in carrier mobility, espe-
cially along the stacking direction.

Solar cell performance
Finally, to test the impact of light-induced contraction on 2D 
perovskite solar cells fabricated using the three types of crystal struc-
tures (DJ n = 4, ACI n = 3 and RP n = 4), we monitored the evolution 
of their current–voltage characteristics as a function of illumination 
time (Fig. 5d). After 10 minutes, we observed a notable increase in 
the VOC and FF of the DJ and ACI devices, whereas the solar cells 
based on RP 2D perovskite remained almost unchanged, as illus-
trated in Fig. 5e. The overall power conversion efficiency increased 
by 2.7% in solar cells based on DJ, 3.5% in ACI and less than 1.0% 
in RP. The overall increase in the power conversion efficiency of DJ 
and ACI 2D perovskite solar cells arises from a combined increase 
in the VOC and FF. We do not observe any appreciable change in 
the short circuit current density JSC over time, which is consistent 
with the invariant absorbance spectra measured as a function of 
light soaking. These improvements in the VOC and FF are in good 
agreement with both the correlated in-situ solar cell and X-ray mea-
surements described in Fig. 5a–c and the transport measurements 
demonstrated in Fig. 4. Moreover, solar cell measurements on 2D 
perovskites based on DJ, ACI and RP are consistent with the fact 
that light-activated contraction is observed in DJ and ACI, but not 
in RP 2D perovskites, as described in Fig. 2. In addition, to verify 
the recovery for light-induced interlayer contraction, we performed 
a cycle of light on and off measurements (Supplementary Fig. 10b). 
In agreement with the DJ powder and single-crystal results, we 
observed a decrease to the original solar cell efficiency after 23 min-
utes of resting the device in the dark. The largest increase for the 
champion DJ device resulted in the increase in the power conver-
sion efficiency from 15.6% to 18.3%.

As shown in Fig. 5d,e, there are two major changes in the solar 
cell figures of merit after light-induced contraction: the increase of 
the FF and of the VOC. To understand these results, we used our 

device drift-diffusion model, which calculated the change in the 
potential barrier height in the bulk by fitting the current–voltage 
curves before and after light soaking20. The simulated current–
voltage characteristics before and after 10 minutes of illumination 
match closely with the experimental ones. Our simulations indi-
cate that the increase in FF is due to a decrease in the potential 
barrier heights (Supplementary Fig. 10c–f). As shown in our pre-
vious work, the FF in 2D perovskite devices is partly governed by 
the recombination of the photo-generated carriers, which depends 
on the energy landscape of the stacked 2D quantum wells20. Our 
results indicate that the light-induced out-of-plane lattice contrac-
tion, which results from the enhanced I–I bonding across the inter-
layers in DJ and ACI perovskite thin films, lowers the depth of the 
potential barriers, thus decreasing the number of trapped carriers 
and thereby reducing the recombination rate. Simulations show that 
the change in barrier depth for DJ n = 4 is –26.5 meV and in ACI 
n = 3 is –44.5 meV (Supplementary Tables 9 and 10). Furthermore, 
the modelling results indicate a threefold increase in mobility after 
light illumination, which is in good agreement with the experimen-
tal data from the mobility measurements as illustrated in Fig. 4c.

In addition, device modelling indicates that the light-induced 
contraction due to an enhanced antibonding interaction modi-
fies the ionization energy (valence band to vacuum). This leads to 
modification of the conduction and valence band energy profiles 
as validated by the blue shift of the XPS spectra on DJ perovskite 
films (Supplementary Fig. 6)31. The change in the electron affinity 
improves the band alignment between the electron transport layer 
and the 2D perovskite, thus reducing the amount of energy lost 
while transporting between the layers. The electron affinity of the 
2D perovskite increases from 3.72 eV to 3.81 eV for DJ n = 4 and 
ACI n = 3 devices (Supplementary Table 10), thereby resulting in an 
increase in the VOC of the solar cell. We do not observe an increase in 
the JSC as the drift field (V = 0 V) is sufficiently strong to extract the 
photo-generated carriers; therefore, the modification of the energy 
landscape does not change the short-circuit current.

Conclusion
These results have two key implications. First, they demonstrate 
that by selecting the appropriate interlayer cations and by leverag-
ing the acute sensitivity of 2D hybrid perovskites to external stim-
uli, the bandgap discontinuity in the out-of-plane direction can be 
surmounted, and charge transport properties closer to those of 3D 
perovskites can be realized. Second, these results pave the path for 
understanding and tailoring new light–matter interactions, similar 
to those explored in 2D transition-metal dichalcogenides, which 
arise when excitations are coupled across the layered perovskite lay-
ers separated by short organic cations42,43.
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Methods
Materials. The 2D perovskite precursors such as methylamine iodide (MAI), lead 
oxide (PbO2), BA, 4AMP, GA hydrocholoride, anhydrous dimethyl formamide 
(DMF), dimethyl sulfoxide (DMSO) and hydroiodic acid (HI) were purchased 
from Sigma-Aldrich. MAI was purchased from Greatcell Solar. For device 
fabrication, ITO was from Thin Film Device, PCBM was from Sigma-Aldrich and 
PEDOT:PSS was from Heraeus Epurio.

Crystal and thin-film fabrication. Powder crystal synthesis. As previously reported 
in refs. 22,44, the 2D RP perovskite crystals of BA2MA2Pb3I10 were synthesized 
by mixing lead oxide (PbO, 99%), methylamine hydrochloride (MACl, ≥98%) 
and BA (99.5%) in appropriate ratios in a mixture of HI (57 wt% in H2O) 
and hypophosphorous acid (H3PO2, 50% in H2O). The solution was stirred at 
190 °C until all the precursors were dissolved, and then allowed to cool to room 
temperature. This resulted in the crystallization of platelet-like powders with 
micrometre to millimetre sizes. The DJ perovskite crystals of 4AMP-MA2Pb3I10 were 
prepared by combining PbO, MAI and 4AMP (96%) in appropriate ratios in a HI/
H3PO2 solvent mixture. The solution was stirred at 240 °C until all the precursors 
were dissolved, and then allowed to cool to room temperature. This resulted in 
the crystallization of platelet-like powders with micrometre to millimetre sizes. 
A detailed synthesis procedure is reported in ref. 18. The ACI perovskite crystals 
of GAMA3Pb3I10 were prepared by combining PbO, MAI and GA hydrochloride 
(99%) in appropriate ratios in a HI/H3PO2 solvent mixture. The solution was 
stirred at 190 °C until all the precursors were dissolved, and then allowed to cool 
to room temperature. This resulted in the crystallization of platelet-like powders 
with micrometre to millimetre sizes. A detailed synthesis procedure is reported 
in ref. 19. Finally, batches of synthesized 2D perovskite crystals were characterized 
using one-dimensional X-ray diffraction (Rigaku D/Max Ultima II) to determine 
their initial phase purity and crystal quality. Different n-value thicknesses of the 2D 
perovskites were obtained by altering the stoichiometry of the reactants in the RP, 
DJ and ACI perovskites, as reported in refs. 1,3,4.

Film fabrication. To produce 2D perovskite thin films for solar cell devices, we 
first dissolved the synthesized parent-crystal powders in a solvent with different 
additives. The BA2MA3Pb4I13 or GAMA3Pb3I10 solution was obtained by dissolving 
0.4 g of the parent crystals and 0.02 g of dried MACl in 1 ml of anhydrous DMF. 
The 4AMP-MA3Pb4I13 solution was prepared by dissolving 0.4 g of the parent 
crystals in 1 ml of anhydrous DMF/DMSO (1:1) with 1 µl of HI. The prepared 
solution was left on the hotplate at 70 °C for 6 hours. After cooling, 100 µl of 
the prepared solution was instantly dropped and spin coated over substrates at 
4,000 r.p.m. for 30 seconds followed by annealing at 100 °C for 10 minutes, resulting 
in the formation of the 2D perovskite thin films.

Large-area single-crystal synthesis. The DJ n = 3 4AMP-MA2Pb3I10 single crystal 
was synthesized using PbO (Sigma-Aldrich, >99%), 4AMP (>96%) and MAI 
(>99.9%); HI (57.0 wt% in H2O); and H3PO2 (50 wt% in H2O). The PbO, 4AMP 
and MAI were mixed in the appropriate ratio in a HI/H3PO2 solution, indicated in 
ref. 18 and stirred at 240 °C until dissolved. The solution was then diluted with three 
times the amount of HI. Afterward, 10 μl of the diluted solution was dropped onto 
the glass surface and sandwiched by another piece of glass. This system was then 
annealed for 8 hours at 60 °C resulting in large millimetre-sized perovskite single 
crystal. Further details can be found in ref. 45. The glass substrates used in this 
procedure were washed in water, acetone, acetone/ethanol (50:50) and isopropyl 
alcohol by ultrasonication for 15 min each.

Solar-cell device fabrication. We used an inverted planar device architecture 
with ITO/hole-transport-layer/2D-perovskite-film/electron-transport-layer/
aluminium for the solar cells, as depicted in Fig. 3. This solar cell architecture 
used PEDOT:PSS (Heraeus Epurio, Clevios) as the hole transport layer and PCBM 
(Sigma-Aldrich, 99.9%) as the electron transport layer. Film fabrication steps are 
shown below. We first washed the patterned ITO in water, acetone, acetone/ethanol 
(50:50) and isopropyl alcohol by ultrasonication for 15 min each. The substrate 
was further dried under argon airflow and treated with UV light for 30 min. A 
PEDOT:PSS layer was spin coated on the clean ITO substrate at 5,000 r.p.m. for 
30 seconds followed by annealing at 150 °C for 30 min to obtain a layer thickness 
of about 30 nm. The ITO/PEDOT:PSS substrates were subsequently transferred 
to an argon-filled glove box. Using the methodology from the film fabrication 
in the previous section, we fabricated 2D perovskite thin films of approximately 
250 nm thickness on top of the ITO/PEDOT:PSS substrate. To prepare the electron 
transport layer, we dissolved 25 mg PCBM in 1 ml of chlorobenzene and stirred 
overnight at 60 °C. Afterwards, 50 μl of the PCBM solution was dropped on 
the ITO/PEDOT:PSS/2D-perovskite sample and spin coated at 1,000 r.p.m. for 
45 seconds to form a 30 nm electron transport layer thin film. The solar cell device 
was completed by evaporating a 100 nm layer of aluminium using a shadow mask, 
yielding eight cells of 31.4 mm2 per 25.4 × 25.4 (mm2) area of the sample device.

Solar-cell device characterization. The performances of the fabricated solar cells 
were characterized by measuring the current–voltage (J–V) curves of each device 
illuminated by an ABB Solar Simulator from Newport (model 94011). The arc 

simulator modelled AM 1.5G irradiance of 100 mW cm–2 and was calibrated using 
a solar cell certified by the National Institute of Standards and Technology (NIST; 
Newport 91150V, International Organization for Standardization (ISO) 17025). The 
current was measured with a Keithley 2401 instrument at different voltage scan rates.

GIWAXS. In-situ GIWAXS measurements. All diffraction spectra used in this 
paper were high-resolution synchrotron GIWAXS patterns measured at two 
beamlines: 8-ID-E at the Advanced Photon Source (APS) and 11-BM at the 
National Synchrotron Light Source II (NSLS-II). At beamline 8-ID-E, samples were 
placed on a Linkam grazing incidence X-ray scattering (GIXS) stage (temperature 
controlled at 25 °C) inside a vacuum chamber (10−4 torr) with the sample 228 mm 
away from a Pilatus 1M (Dectris) area detector. The photon energy was 10.91 keV, 
and the beam size was 200 μm × 20 μm (Height × Vertical). At beamline 11-BM, 
two different staging schematics were used for GIWAXS measurements: (1) a 
built-in-lab GIXS chamber (which circulated high-purity helium gas) with the 
sample 257 mm away from a Pilatus 300M (Dectris) area detector and (2) a robotic 
stage inside a vacuum chamber (10−2 torr) with the sample 267 mm away from 
a Pilatus 800K (Dectris) area detector. The photon energy was 13.5 keV, and the 
beam size was 200 μm × 50 μm (Height × Vertical).

For the in-situ light-illuminated crystal GIWAXS measurements, we installed a 
Newport Class ABB Solar Simulator on top of each beamline chamber (schematic 
(1) staging chamber for beamline 11-BM) and illuminated with 1 Sun (AM 1.5G) 
irradiance. To calibrate the solar simulator illumination irradiance for all in-situ 
GIWAXS measurements, we measured 100 mW cm–2 using a NIST-certified Si 
solar cell (Newport 91150V, ISO 17025). After each powder light illumination 
experiment, samples were directly transferred to a vacuum chamber (10−2 to 
10−4 torr) for relaxation. All in-situ light-illumination GIWAXS patterns were 
acquired at 3 min intervals, an X-ray incident angle of 0.15° and a 3 s exposure 
time. For the in-situ light-illuminated device measurements, we used the same 
set-up as for the GIWAXS measurements of crystals but connected a Keithley 
2400 multimeter to the device through a feedthrough. The GIWAXS patterns and 
current–voltage responses were acquired at 1–2 min intervals, at an X-ray incident 
angle of 0.24° and a 5 s exposure time.

Temperature-dependent GIWAXS measurements were obtained at both 
the APS and NSLS-II beamlines. At the APS beamline, temperature-dependent 
measurements were obtained by cooling to liquid nitrogen temperatures and 
heating to 80 °C using the Linkam GIXS stage. An incident angle of 0.15° and a 5 s 
exposure time were used at both beamlines for the temperature measurements.

Three types of sample were used for the in-situ light-illumination 
measurements: synthesized powder crystals, millimetre-sized single crystals and 
thin-film devices. Powder crystals were used for the temperature-dependent 
measurements. Samples were all sealed in an airtight vacuum bag purged with 
argon right up until the measurement time. Powder GIWAXS measurements were 
performed by crushing and smearing the powder crystal onto clean glass substrates 
(wiped with acetone and isopropyl alcohol using Kimwipes).

GIWAXS data processing. GIWAXS data from the APS beamline were processed 
using the GIXSGUI package (version 1.7.3) running on Matlab 2018b (Mathworks)46. 
GIWAXS data from the NSLS-II beamline were processed using SciAnalysis (https://
github.com/CFN-softbio/SciAnalysis) running on Visual Studio Code using Python 
(v.3.7.3)47. All patterns were corrected with conditions such as detector sensitivity, 
X-ray polarization and geometrical solid-angle parameters.

GIWAXS analysis. To analyse the in-situ light-illuminated GIWAXS measurements, 
numerical fitting of the diffraction profiles was performed in Matlab 2018b. Each 
diffraction peak range was fitted with pseudo-Voigt profiles48. Each fit used the 
built-in ‘fmincon’ function, which constrained the pseudo-Voigt profile to physical 
ranges in terms of peak line-width (full-width at half-maximum, FWHM). This 
allowed the fit to discard unphysical domain boundaries and crystallite sizes. Due 
to the small residual from the ‘fmincon’ fit, the error interval is smaller than the 
size of each point in the strain and lattice parameter plot.

The Debye–Scherrer formula was used to extract the average grain size (Dhkl) of 
the 2D perovskites49. The first-order out-of-plane diffraction plane was used for the 
analysis. The shape factor of 0.9 (K value in the Scherrer equation) was used9. The 
Scherrer formula is

Dhkl =
Kλ

βhklcos (θhkl)

where θhkl is the Bragg scattering angle, βhkl is the FWHM and λ is the X-ray 
wavelength. Since this is a grazing scattering geometry with area detectors, we have 
corrected the FWHM for the beam divergence (βdiv) and the energy bandwidth 
(βBW)50. βexperiment is the experimentally measured FWHM. The geometric smearing 
is neglected for small Bragg scattering angles. The FWHM correction is given by

βhkl =
√

β2
experiment − β2

res

βres =
√

β2
div + β2

BW
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Effective interlayer distance calculations. Due to the uniform stacking of the DJ 
perovskite, the out-of-plane and in-plane diffraction axes are deconvoluted. With 
this and the assumption that a perovskite octahedra does not undergo a large 
distortion (confirmed by DFT calculations), we formulate the effective interlayer 
distance as the following:

Effective interlayer distance (t) = D300 (t) − 3 × D011 (t)

where t is the light illumination time, D300 is the out-of-plane d spacing (lattice 
spacing) and D011 is the in-plane d spacing.

XPS. XPS measurements were carried out on a PHI Quantera XPS system. Before 
and after light illumination, XPS was performed on large millimetre-size DJ and 
RP n = 3 single-crystal perovskites and films grown on a glass substrate using 
the procedure mentioned in the first section of the Methods. Etching was not 
performed, and the sample environment was at 10−8 torr for the duration of the 
experiment. Each peak was averaged using 20–25 collected spectra. Emission 
spectra were calibrated to carbon 1s photoelectron emission at 284.80 eV. The 
samples were illuminated using an ABB Solar Simulator from Newport (model 
94011) for one hour. The XPS spectra were fitted to a pseudo-Voigt profile, and the 
error was extracted using the ‘nlparci’ function in MATLAB from the Jacobian of 
the fit.

Transport characterization. We fabricated an electron-only device with ITO/
SnO2 on one side and then C60/Cu on the other side. The 2D perovskite thin films 
were measured to be about 250 nm in thickness. The samples were illuminated 
using an ABB Solar Simulator from Newport (model 94011) for 40 min. The 
arc simulator modelled AM 1.5G irradiance of 100 mW cm–2 and was calibrated 
using a NIST-certified Si solar cell (Newport 91150V, ISO 17025). The current 
was measured with a Keithley 2401 instrument at a scan rate of 0.5 V s–1. The 
device was measured in vacuum (10−2 torr). The analysis was performed by fitting 
in MATLAB and using the optimization package and a numerical least square 
algorithm ‘lsqcurvefit’. An error bar for conductivity and mobility was extracted 
by using the Jacobian of each time fit. We used the ‘nlparci’ function in MATLAB’s 
optimization package to extract a 95% confidence interval, and the error was the 
absolute difference of the interval.

Theoretical structural simulation. DFT simulations. The calculations were 
performed using DFT51,52 as implemented in the SIESTA package with a basis set 
of finite-range numerical atomic orbitals53. We used the van der Waals density 
functional with C09 exchange within the van der Waals DF2 flavour to describe the 
exchange–correlation term54,55. This tuning was suggested to improve C09-based 
geometry optimization over that with DF1 flavour55. The latter has already provided 
a good description of experimental lattice constants similar to those obtained with 
the optimized generalized-gradient-approximation-based PBEsol functional in 
solids56,57. Norm-conserving Troullier–Martins pseudopotentials were used for each 
atomic species to account for the core electrons58. The 1s1; 2s22p2; 2s22p3; 5s25p5 and 
5d106s26p2; and 2s22p4 and 4s23d8 were used as valence electrons for H, C, N, I and 
Pb, respectively. Polarized double-zeta basis sets with an energy shift of 200 meV 
were used for the calculations. For the real space mesh grids, an energy cut-off of 
600 Rydberg was used. We used the following Monkhorst–Pack k-point grids for 
the different systems: 2 × 8 × 8 for the DJ compound; 4 × 1 × 4 and 4 × 4 × 1 for the 
ACI n = 2 and n = 3 compounds, respectively; and 6 × 1 × 6 for the BA compound. 
The different structures were fully relaxed using the fast-inertial relaxation engine 
(FIRE) algorithm, and the maximum force was set to 0.05 eV Å–1 (ref. 59). Since it is 
not possible in the official distribution of SIESTA to perform structural relaxations 
while keeping the original symmetries, we constrained the angles of the different 
structures to 90° (lattice angles α = β = γ = 90°) during the geometry optimization 
such that they remain in their orthorhombic starting systems. Charges were 
injected into the system by either adding (electron injection) or removing (hole 
injection) the desired number of electrons. In doing so, the simulation code applies 
a compensating background charge to maintain the overall neutrality of the system. 
The procedure that we used to set a net equivalent charge for comparison between 
the different systems is discussed below.

Modelling net equivalent charges. Due to the considerable difference in the unit cell 
volume for the different 2D perovskite phases, a common guideline of scaling the 
net equivalent charges was used to induce the general effect of charge injection. An 
example of this discrepancy in unit cell volume is that the experimental structure 
of the DJ compound presents six inorganic [PbI6]4– octahedra with a volume of 
1,810.82 Å3 while the experimental structure of the RP compound presents 12 
[PbI6]4– octahedra with a volume of 3,987.67 Å3. Hence, injecting one electron 
into the DJ structure is not equivalent to injecting one into the RP structure. We 
used the number of inorganic octahedra as a guide to fix a net equivalent charge 
for comparison. For example, injecting one charge in the DJ structure with six 
octahedra would be equivalent to injecting two charges in the RP structure with 
12 octahedra. Supplementary Table 2 summarizes the number of charges used to 
get the net equivalent charges for the different systems. The DJ compound with six 
octahedra was used as a reference to get the conversion for the other systems based 
on the number of inorganic octahedra.

Structural model. The starting structures used in the DFT simulations were 
obtained from previous X-ray diffraction measurements18,22,44,45. In the ACI 
compounds (n = 2, 3), the first lattice parameter a is ~6.4 Å, which potentially leads 
to more spurious periodic image interactions when charges are injected into the 
system. To minimize the latter effect, the cells were doubled along the a direction 
for both n = 2 and 3 of the ACI compounds resulting in the a lattice parameter 
being about 12.8 Å. Due to the molecular positions in the X-ray diffraction data, 
which are subject to ambiguity because of their dynamic disorder, especially at 
room temperature, we rotated every second MA molecule to 180° in each plane of 
the perovskite layer for the ACI compounds4. This was to minimize the net dipole 
in the system. Similarly, for the DJ compound, we rotated every second 4AMP 
organic barrier molecule to 180°. The results from the geometry optimization 
of the different systems are summarized in Supplementary Tables 3–5 and 6. 
For the DJ compound, the results obtained using the experimentally reported 
molecular 4AMP orientations are also summarized in Supplementary Table 3b for 
comparison.

Technical comment. We note that relaxing the DJ n = 3 structures using the Broyden 
optimization algorithm as implemented in SIESTA presents issues related to the 
sticking of the systems in local minima. In the case of hole injection at a charge 
+2, we noticed that the system got stuck at a local minimum not too far from the 
convergence criteria. In particular, the in-plane lattice parameter tended to be 
contracted at charge +2, which is in better agreement with experiment. However, 
given that the convergence on the forces was not fully satisfied, it could be that the 
in-plane lattice parameters would exhibit a different behaviour if the criteria were 
met, as in the case of the FIRE relaxation algorithm that we adopted for this work.

Device simulation. Optical modelling. The optical absorption for the perovskite 
cell was modelled using the full-wave solution of Maxwell’s equations. The 
transfer matrix method was used for the planar cell structure. A 300–1,500 nm 
wavelength range was used in the calculation. Further details can be found in the 
Supplementary Information, as the same simulation was used in this study20.

Self-consistent transport simulation. Electron and hole transportation in the solar 
cell was simulated by MEIDCI, a commercial device simulator software. For carrier 
transport equations, the generation term in the continuity equation was calculated 
from the photo-generated profile, and the recombination term in the continuity 
equation was calculated for direct as well as for defect-assisted Shockley–Read–
Hall recombination. Effects from excitons and hot electrons were not accounted for 
explicitly.

Electrical field profile. To simulate the electric field distribution in the device, a 
200 nm perovskite film thickness was selected. Four quantum wells were used 
for the simulations. The depletion region width for the layer perovskite was from 
previous studies24.

Data availability
The data for this study are available from the authors upon reasonable request.

Code availability
The analysis code for this study is available from the authors upon reasonable 
request.
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