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Summary
Development of efficient electrocatalytic gas-evolving elec-
trodes is one of the essential prerequisites for the deployment
of hydrogen-based electrochemical energy conversion and
storage. Gas bubbles generated by electrolysis at electro-
catalytic interfaces manifest into undesirable increase in
overpotential that simultaneously compromises stability of the
electrocatalytic materials. A key research question is how to
use theory and advanced experimental tools to holistically
understand the mechanism of gas-evolution phenomena and
finally arrive at principles of electrode design that will assure
facile gas evolution. The analysis given in this work offers an
optimistic framework how to significantly reduce overpotential
and enhance electrode stability during water electrolysis.
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Introduction
Electrochemical energy conversion is in continuous
development [1]. The success of lithium-ion batteries is
recognised globally [2]; however, a breakthrough in
hydrogen energy is still missing [3]. After decades of

solving challenges game changing progress remains
elusive [4]. In the hydrogen conversion cycle, the initial
www.sciencedirect.com
process is water electrolysis, whose efficiency besides
thermodynamic voltage, is determined by energy dissi-
pations including the following: kinetic overpotentials,
ohmic drops, mass transport limitations and so on.
During the last decade, the most intensive in-

vestigations were in the direction of electrocatalysis of
the oxygen evolution reaction (OER). These efforts led
to the design of exceptionally active electrocatalysts,
which unfortunately routinely exhibited limitations
during stability tests [5]. Systematic investigations of
electrocatalyst stability initiated recently featured the
central question: How to design active and stable elec-
trochemical interfaces?
Learning from the past
To further improve water electrolysis, it is important to
learn from well-established technologies and ground-
breaking discoveries that led to major technological ad-
vancements. A great example is the introduction of
dimensionally stable anodes (DSAs) for chlorine pro-
duction in chlor-alkali technology in 1970s [6]. Reducing

the voltage of the electrochemical reactor by more than
1 V [7], until today has had the consequence massive
electricity savings worldwide. To understand this
disruptive innovation, it is necessary to have technical
data where the energy consumption of the electro-
chemical reactor is ‘dissected’ into components. Taking
the example of the technical data given in Table 1 that
was analysed in detail in the past [7,8], rather than
intrinsic electrocatalytic activity, the largest contribution
to energy savings was minimisation of the gas bubble
effect. The gas bubble effect is a consequence of a

significantly higher concentration of the product than
predicted by Henry’s law (supersaturation), at near-
electrode region [9]. Gas bubbles block a fraction of
the active sites [10] and enlarge the ohmic resistance of
the electrolyte [11], which can have a dramatic impact
on the reactor voltage [12]. The process of gas evolution
comprises the following: nucleation, growth, coalescence
and detachment [13]. Gas bubble detachment is the
terminal step of gas evolution which makes previously
covered active sites available again for reaction. There-
fore, acceleration of gas bubble detachment is an

essential process behind dramatic energy efficiency
improvement of chlor-alkali technology.
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Table 1

Comparison of voltage components, current efficiency and
energy consumption of electrochemical reactor in chlor-alkali
technology, for two different anodes, graphite and DSAa.

Graphite DSA

Anode potential (V) 1.47 1.37
Cathode potential (V) −1.85 −1.85
Anode ohmic drop (V) 0.15 0.15
Electrolyte ohmic drop (V) 0.60a 0.40b

Gas bubble effect (V) 0.90 0.13
Current efficiency (%) 96 97
Energy consumption (kWh t−1)c 3910 3040

Reprinted from Trasatti [7] with permission from Elsevier.
a Anode-cathode distance 3 mm.
b Anode-cathode distance 2 mm.
c Current density 10 kA m−2.
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For water electrolysis there is apparently no available
technical data similar to that shown in Table 1; never-
theless, the gas bubble effect must substantially
contribute to voltage. Unfortunately, not many works
were conclusive in trying to explain the mechanism(s) of
fast bubble detachment in order to propose design
principles for electrodes with superior properties [14],
including the development of analytics to shed light on
the complexity of gas evolution.
Mechanism of electrocatalytic gas bubble
evolution
The first step in the mechanism is the nucleation
process, governed by the critical radius that is pro-
portional to the surface tension of the liquid and
cosine of the contact angle of the liquid at the elec-

trode surface as well as inversely proportional to the
difference between external pressure and interfacial
pressure. This should be straightforward from the
Young-Laplace equation, although various literature
sources are not coherent in their description of bubble
nucleation [15,16]. Interesting is that the hydrogen
evolution reaction (HER) that exhibits superior ki-
netics in comparison to OER, proceeds at unfav-
ourable hydrophobic surfaces. Opposite is with OER
that has severely inferior kinetics in comparison to
HER, but proceeds at desirable hydrophilic surfaces.

At the same time, gas bubbles in electrolytes with
pH < 2 carry positive charge, while those with pH > 3
carry negative charge. Therefore, negatively charged
HER cathode will additionally attract bubbles in
electrolytes with pH < 2 and repulse bubbles in
electrolytes with pH > 3. Analogy can be drawn for
OER anodes [17]. Failure to separate the impact of
intrinsic activity from the physics of gas evolution can
introduce uncertainty in catalytic trends [18].
Therefore, gas evolution exhibits a strong dependence
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on the hydrophilicity of the electrode surface and also
on electrolyte pH [8,19].

After nucleation, gas bubbles grow proportionally to the
applied overpotential, number of active sites, distribu-
tion of active sites and so on [20]. Finally, after growth
and certain period of time spent at the electrode sur-
face, the gas bubble is getting detached [21]. To un-

derstand the average period that one gas bubble spends
on the electrode surface and effectively blocks active
sites, it is instructive to recall the analogy between
phenomena of gas evolution and physics of boiling [22],
despite this analogy having limitations [23]. In the
physics of boiling, it is well established that the radius of
gas bubble detachment is inversely related to the
detachment frequency. In other words, if one can keep
the gas bubble radius small, the frequency of detach-
ment should be higher than for larger bubbles. This is a
consequence of the mechanism of bubble detachment.

Namely, gas bubbles are, due to significant amount of
thermal energy, in constant oscillatory motion. Oscilla-
tory motion of bubbles causes opposing flows of the
liquid towards the root of the bubble. The smaller the
gas bubbles are, the more frequent are the opposing
flows of the liquid that can ultimately cause bubble
detachment.
Electrode morphology design
To accelerate gas evolution, one has to limit the growth
and coalescence in confined regions of the electrode
surface. If the interfacial layer would be observed stat-
ically or ‘frozen’, then the surface covered by larger
bubbles would have more available active sites between
bubbles, than in the case of small bubbles. However, the
system is dynamic meaning that the interface with
smaller bubbles and higher detachment frequencies

manifest overall higher accessibility of active sites [18].
A schematic of the gas evolution process is visualised in
Figure 1 at a DSA-type of surface [24].

Gas bubbles nucleated in ‘cracks’ are limited in growth
and they detach frequently with relatively small radii. To
assure stable nucleation and to minimise growth,
‘cracks’ should have adequate depth, because the crit-
ical overpotential for gas bubble nucleation drops with
increase in thickness of the catalyst layer [25]. Growth
of gas bubbles is possible at the outer surface of

‘islands’, but due to frequent micro-convection into the
‘cracks’, growth at the outer surface of the ‘islands’ will
be interrupted. Therefore, the electrode surface has to
be with defined ‘crack’ size and defined thickness of the
catalyst layer. This is possible by controlling the tensile
stress during synthesis [24]. The efficiency of gas evo-
lution is essentially an interplay of surface morphology
and operational parameters [26]. This has a conse-
quence on a very important property for kinetic studies
known as the effective surface area (Aeff), which reflects
www.sciencedirect.com
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Figure 1

Illustration of gas evolution mechanism on an electrode with an internal
hydraulic regime. Reprinted from Zeradjanin et al. [24] - Published by The
Royal Society of Chemistry.
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the number of active sites that are not covered by gas
bubbles and quantitatively is between geometric area
(Ageo) and total surface area [18]. In the past it was

shown that the extremely high pressure (i.e., hundreds
Figure 2

Current density (j), voltammetric surface charge (q*) and apparent turnover freq
as indicated with red rectangular in corresponding SEM micrographs. Reprin
correlation between electrochemical and geometric properties is an illustratio
histogram, including SEM of scanned inhomogeneous DSA surface. Reprinte
electron microscopy; SECM, scanning electrochemical microscopy.

www.sciencedirect.com
of bars) was necessary to activate nanopores to partici-
pate in the reaction [27]. Pores will be filled with
electrolyte if the pressure difference is high enough to
overcome surface tension of the liquid. At room tem-
perature conditions, it seems that pores of relevance
should preferentially be on a microscale rather than
nanoscale [28]. At the same time, there are numerous
efforts in designing morphology on nanoscale [29e36].

Analytical tools and spatiotemporal
characterisation
For four DSA samples with almost identical chemistry,
electrochemical properties are analysed as function of
geometric properties (i.e., ‘crack’ size) as shown in
Figure 2. Although voltammetric surface charge
(analogue to number of active sites) was steadily drop-
ping with increase in ‘crack’ size, apparent turnover

(current density normalised by voltammetric surface
charge) was increasing steadily up to ‘crack’ size of
approximately 1.5e2.0 mm and then turnover rapidly
increased almost 300%. Considering that DSA samples
had almost identical chemistry, the drastic enhance-
ment in performance was attributed to significantly
accelerated gas evolution. As stated previously, facile gas
evolution happens when gas bubbles are limited in
growth. Modelling also indicates that nucleation-driven
uency (Hz) of the four DSA samples with different average ‘crack’ size (d),
ted from Zeradjanin et al. [28] with permission from Elsevier. Below the
n of the spatial distribution of activity as SECM scan and corresponding
d from Zeradjanin et al. [8] with permission from Elsevier. SEM, scanning
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bubble detachment could result in the lowest over-
potentials [37]. Besides morphology, of major impor-
tance is spatial distribution of the morphological
pattern. Figure 2 (centre/down) shows that local cata-
lytic current can vary significantly, due to morphological
heterogeneities, as evaluated by scanning electron mi-
croscopy and scanning electrochemical microscopy
(SECM).

Local current distribution can be expressed by variation
coefficient, that is, the standard deviation of local cur-
rent normalised by mean local current. Figure 3a shows
that more uniform current distribution results in better
overall performance, which is an important fact for the
Figure 3

Spatiotemporal oscillations and electrode stability. (a) Overall current density
obtained by SECM. Reprinted from Zeradjanin et al. [8] with permission from
Reprinted from Zeradjanin et al. [18] with permission from Wiley. (c) Time-res
cell coupled to inductively coupled plasma mass spectrometer. Reprinted from
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electrode preparation process. Arguably, the most
important aspect of characterisation is to monitor fre-
quencies of gas bubble detachment. Detailed analysis of
potential-dependent frequency spectra (Figure 3b)
recorded by SECM was given previously [18]. In general
terms, one can analyse how gas bubble detachment
frequencies develop with overpotential. If frequency
changes easily with overpotential, bubble growth is

kinetically controlled and concentration overpotentials
are minimised. Also, if gas bubbles evolve with one
single frequency, this indicates preferential radius of
detachment. From empirical data, electrodes with uni-
form gas bubble detachment frequency are generally
known to have excellent performance in comparison to
as function of variation coefficient as indicator of local current distribution
Elsevier. (b) Potential-dependent frequency spectra obtained by SECM.
olved potential-dependent dissolution profile obtained by electrochemical
Zeradjanin [24] - Published by The Royal Society of Chemistry.

www.sciencedirect.com

www.sciencedirect.com/science/journal/24519103


Bubbles and water splitting electrocatalysts Zeradjanin et al. 5
those with multiple detachment frequencies [26]. For
the future, it is very important to conduct high-
resolution spatiotemporal analysis of electrocatalytic
performance [38] including analysis of time-dependent
frequency spectra [39].

In industrially relevant galvanostatic electrolysis, for a
predefined mass of product proportional to current in-

tensity, current density as well as overpotential will be
lowest for the electrode with highest number of acces-
sible active sites. That will be the case for the electrode
with very facile gas evolution, meaning high effective
surface area. If the effective surface area is low, local
high current density causes high local overpotential that
induces severe local catalyst dissolution during OER,
thus revealing an enormous impact on stability of elec-
trodes [40]. In situ time-resolved experiments on cata-
lyst dissolution during OER with intensive gas bubble
evolution on various morphologies, especially in the

galvanostatic regime, are to our knowledge not reported
in literature.

Figure 3c shows potentiodynamic perturbation and
dissolution profile for samples with almost identical
chemistry, but different morphology. A ‘cracked’ sample
that at 1.45 Vexhibited two times higher current density
at the same time exhibited two times lower dissolution
in comparison to a ‘crack’-free sample [24]. Accelerated
gas evolution on the ‘cracked’ sample caused more
intensive natural convection of electrolyte while in the

case of the ‘crack-free’ sample highly acidified electro-
lyte remains in the inter-bubble spacing and allows for
accelerated corrosion [24]. This is a clear case how
morphology design can be the way to reduce over-
potential and enhance stability of electrocatalysts under
aggressive operational conditions.

Because of a negligible impact of nanostructuring on
overpotential in our experiments, we focused on the
microscale. However, nanobubbles exist at the electrode
surface and play a role that is still not resolved [41].
Existing reports are contradictory stating that nano-

bubbles grow into microbubbles before getting de-
tached form the surface [13] or completely the opposite,
claiming that nanobubbles do not grow but dissolve in
the electrolyte [42]. Interesting for reader could be
analysis where nanobubbles were investigated using
nanoelectrodes [43]. Besides nanoelectrodes being
interesting tools to study nanobubbles, an interesting
tool for studying nanobubble in parallel with micro-
bubbles would be the electrochemical quartz crystal
microbalance [44]. At the end, worth to mention are
approaches to accelerate gas evolution externally using

centrifugal field, ultrasonic field, magneto-
hydrodynamic field and so on [45], or using surfactants
[17,46e48]. The role of magnetic field was recently re-
examined [49] revealing tremendous impact on gas
evolution [50].
www.sciencedirect.com
Conclusions and perspectives
This comprehensive perspective to understanding gas

bubble evolution comprises the following: (1) hypoth-
esis on mechanism, (2) experimental tools for spatio-
temporal analysis of activity and in situ analysis of
stability and (3) morphology design was shown as an
example how to acquire knowledge and use it to
improve existing state-of-the art electrodes. Impor-
tantly, it was shown that a carefully designed morpho-
logical pattern can be a pathway to simultaneously
reduce overpotential and enhance stability of electrodes
under operational conditions. With our approach we
hope to encourage future creative endeavours, espe-

cially those attempting to resolve behaviour and impact
of nanobubbles.
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