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Experimental section

Preparation of catalysts

h-PdMo, h-PdMo/Mo2N, and Mo2N catalysts were prepared via ammonolysis of 

an oxide precursor. Oxide precursors were prepared by the Pechini method using 

(NH4)6Mo7O24·4H2O (81-83% MoO3 basis, Aldrich) and Pd(CH3COO)2 (98%, TCI) as 

Mo and Pd sources, respectively. Mo and Pd sources in predetermined ratios and citric 

acid at twice the amount of the total metal ions were dissolved in 6% aqueous HNO3 at 

room temperature. The solution mixture was placed in a heating mantle at 80 °C, stirred, 

and evaporated until a transparent gel formed. The temperature was then raised to 

200 °C and the gel was converted to an amorphous precursor, which was calcined at 

500 °C for 2 h in air to obtain the oxide precursor. Finally, ammonolysis of the oxide 

precursor was performed at 700 °C in a flow of NH3 (10 mL min−1) for 12 h. The 

resultant material with Pd/Mo=1.08 is referred to as h-PdMo, whereas that with 

Pd/Mo<1.08 is named as h-PdMo/Mo2N because PdMo intermetallic nanoparticles are 

formed on Mo2N as shown in Figures 2a-e. Mo2N was prepared from Mo-oxide 

without Pd by the same procedure as h-PdMo. To examine the effect of Pd precursor, 

h-PdMo/Mo2N (PdMo=0.05) was also synthesized by using Pd(NH3)4Cl2·H2O (98%, 

Aldrich) as the Pd source. For Pd/Mo2N catalyst, Pd(acac)2 (99%, Aldrich) was used as 

a Pd precursor, which was mixed with Mo2N in an agate mortar. The mixture was then 

heated at 300 °C in a flow of H2 (10 mL min−1) for 2 h with a heating rate of 2 °C min−1. 

The copper-based methanol synthesis catalyst (Cu/ZnO/Al2O3 pellets, Alfa Aesar) was 

obtained as a commercially available product. Cu/ZnO/Al2O3 pellets were hand-milled 

in an agate mortar and used as a powder. All catalysts were reduced by H2 at 300 °C for 

2 h with a heating rate of 2 °C min−1 before the CO2 hydrogenation reaction.
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Methanol synthesis reaction

Methanol synthesis was conducted in a silica-glass fixed-bed reactor with 0.1 g of 

catalyst in a flow of CO2-H2-Ar (CO2:H2:Ar = 1:3:1, 50 mL min−1) or CO-H2-Ar 

(CO:H2:Ar = 1:2:1, 40 mL min−1) under atmospheric pressure (0.1 MPa) or CO2-H2-Ar 

(CO2:H2:N2 = 1:3:1, 50 mL min−1) under pressurized conditions (0.3-0.9 MPa). The 

outlet gas was analyzed using an online gas chromatograph (7890A, Agilent) equipped 

with thermal conductivity and flame ionization detectors. 

Catalyst characterization

The crystal structure was identified using X-ray diffraction (XRD; MiniFlex600, 

Rigaku or D2 PHASER, Bruker) with Cu Kα radiation (λ = 0.15418 nm). The 

composition of the PdMo catalyst (Pd/Mo = 1.08) was determined as the average of 

measurements taken at 50 random points using an electron probe micro analyzer 

(EPMA; JXA-8530F, Jeol). The amount of Mo and Pd in the catalysts was estimated 

from inductively coupled plasma atomic emission spectroscopy (ICP-AES; ICPS-8100, 

Shimadzu) measurements. The morphology and elemental distribution of a single 

particle of catalyst were evaluated using field-emission scanning electron microscopy 

(FE-SEM; JSM-7600F, Jeol) with energy-dispersive X-ray spectroscopy (EDX). 

Temperature-programmed desorption (TPD) of N2 was conducted by heating (10 °C 

min−1) a sample in an Ar stream, and the desorbed gas was monitored with a mass 

spectrometer (BELMass, MicrotracBEL). TPD of CO was performed using the same 

instrument as TPD of N2. Prior to measurements, the samples (ca. 30 mg) were reduced 

under an H2 flow (10 mL min−1) at 300 °C for 2 h. After cooling to room temperature 
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with flowing Ar, CO adsorption was conducted in a stream of 10 vol% CO/He at 35 °C. 

Then, the sample was heated (5 °C min−1) in a stream of Ar and the desorbed gas was 

monitored with a mass spectrometer (BELMass, MicrotracBEL). 

Temperature-programmed reaction (TPR) of H2 was conducted by heating (10 °C 

min−1) a sample in an H2 stream, and the desorbed gas was monitored with a mass 

spectrometer (BELMass, MicrotracBEL). The amount of anions was also estimated 

with an elemental analyzer (MICRO CORDER JM-10, J-Science). The 

Brunauer-Emmett-Teller (BET) specific surface areas of the samples were determined 

from nitrogen adsorption-desorption isotherm measurements at −196 °C using an 

automatic gas adsorption instrument (BELSORP-mini II, MicrotracBEL). The 

microstructural characteristics of the samples were determined using transmission 

electron microscopy (TEM; JEM-ARM200F, Jeol). EDX mapping of the same area was 

also performed. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy 

was performed using a spectrometer (FT/IR-6X, Jasco) with a 

mercury-cadmium-tellurium (MCT) detector at a resolution of 4 cm−1. Prior to CO2 

hydrogenation, the samples were reduced by H2 at 300 °C for 2 h. After the sample was 

cooled to room temperature, a mixed gas (CO2:H2 = 1:3, 20 mL min−1) was supplied to 

the chamber, and measurements were conducted at room temperature.
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Supplementary Note 1: Stabilization of hcp-PdMo intermetallic phase

According to the equilibrium diagram of the Pd-Mo system, an intermetallic 

compound with the hexagonal close-packed (hcp) structure exists in the range of 50-60 

at% Pd.1 The XRD pattern for this phase (ICSD No. 105061) is very close to that of the 

present sample (Pd = 52 at%) (Figure S1). In the XRD pattern of this sample, peaks 

except for the 002 plane are shifted to lower angle, which indicates distortion and 

expansion of the lattice due to the insertion of anions into the interstitial sites, as 

confirmed by compositional analysis (Table S1). HAADF-STEM observation revealed 

that Pd and Mo were distributed in alternating layers perpendicular to the C-axis 

direction (Figure 1b and S2). Such an ordered structure is considered to be responsible 

for the anisotropic lattice expansion. The PdMo phase containing anions is referred to as 

h-PdMo and is distinguished from the PdMo intermetallic without anions. The PdMo 

intermetallic generally decomposes into Mo (body-centered cubic (bcc) structure) and 

Pd (face-centered cubic (fcc) structure) below 1450 °C. Therefore, it is impossible to 

synthesize or stabilize this phase at lower temperatures. In our experiments, we 

speculate that the insertion of anions into the interstitial sites during the ammonolysis 

process enabled the synthesis and stabilization of this phase at lower temperatures 

(≤700 °C). N2 desorption temperature from h-PdMo was lower than that from Mo2N 

(Figure S3), which suggests that nitrogen is surrounded by not only Mo but also Pd. 

When the anions were desorbed by TPD, the h-PdMo sample decomposed into Mo and 

Pd, as shown in Figure S4. 
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Figure S1 Comparison of XRD patterns for the Pd-Mo catalyst and the previously 

reported PdMo intermetallic.

Figure S2 Fast Fourier transform (FFT) of a single h-PdMo particle. The FFT of the 

TEM image revealed a set of diffraction spots corresponding to a hcp-like crystal 

oriented along the [010] direction.
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Figure S3 N2-TPD profiles for h-PdMo and Mo2N. The TPD experiment was 

performed with a 10 mL min−1 flow of Ar.

Figure S4 XRD patterns for the h-PdMo catalyst before and after TPD measurements.
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Figure S5 XRD patterns for the h-PdMo/Mo2N and Pd/Mo2N catalysts.
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Figure S6 (a) High-resolution TEM image of h-PdMo/Mo2N. (b) FFT of a single 

h-PdMo nanoparticle embedded on Mo2N in (a). The FFT of the TEM image revealed a 

set of diffraction spots corresponding to a hcp-like crystal oriented along the [010] 

direction.
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Figure S7 (a) High-resolution TEM image of Pd/Mo2N. (b) FFT of a single Pd 

nanoparticle embedded on Mo2N in (a). The FFT of the TEM image revealed a set of 

diffraction spots corresponding to a fcc crystal oriented along the [110] direction.
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Figure S8 Reproducibility test of h-PdMo/Mo2N catalyst. Standard deviation from three 

independent catalysts is below ±3 μmol g−1 h−1. (Reaction conditions: 0.1 g catalyst, 

CO2:H2:Ar = 10:30:10 mL min−1, 100 or 140 °C, 0.1 MPa).
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Figure S9 H2-TPR profile for the h-PdMo/Mo2N catalyst.

Figure S10 (a) XRD patterns and (b) methanol synthesis activity of h-PdMo/Mo2N 

(Pd/Mo=0.05) catalyst synthesized by using Pd(NH3)4Cl2·H2O as the Pd source. 

(Reaction conditions: 0.1 g catalyst, CO2:H2:Ar = 10:30:10 mL min−1, 100 °C, 0.1 

MPa).
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Figure S11 Catalytic activity of CO2 hydrogenation to methanol over (a) Mo2N and 

(b-d) h-PdMo catalysts under ambient pressure. (a, b) Methanol synthesis rate as a 

function of reaction temperature. (c) Time course at 100 °C. (d) XRD patterns before 

and after methanol synthesis at 100 °C for 35 h. The h-PdMo catalyst with a Pd/Mo 

ratio of 1.08 was almost single phase hcp-PdMo (Fig. 1a). (Reaction conditions: 0.1 g 

catalyst, CO2:H2:Ar = 10:30:10 mL min−1, 60-160 °C, 0.1 MPa).
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Figure S12 Comparison of catalytic activity for CO2 hydrogenation to methanol over 

h-PdMo/Mo2N and commercial Cu/ZnO/Al2O3 catalysts. (Reaction conditions: 0.1 g 

catalyst, CO2:H2:Ar = 10:30:10 mL min−1, 60-100 °C, 0.1 MPa).
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Figure S13 CO2 hydrogenation to methanol over h-PdMo/Mo2N catalyst with fixed 

W/F and varying flow rates. (Reaction conditions: 0.06-0.13 g catalyst, flow rate = 

30-67 mL min−1 (CO2:H2:Ar = 1:3:1), 140 °C, 0.1 MPa).
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Figure S14 Pressure dependence of catalytic activity for CO2 hydrogenation to 

methanol over the h-PdMo catalyst.
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Figure S15 GC-MS spectra of (a) 13CH3OH obtained from 13CO2 hydrogenation, and 

(b) 12CH3OH as a reference. Hydrogenation of 13CO2 (purity 99%) to 13CH3OH was 

conducted using a 25 mL stainless steel autoclave equipped with a manometer. The 

autoclave was flushed five times with H2, and then the mixture of 13CO2 and H2 gases 

(total pressure: 1 MPa, 13CO2:H2 = 1:3) was introduced into the reaction system. The 

reaction was performed with h-PdMo catalyst (ca. 400 mg) at 35 °C for 24 h. After the 

reaction, the pressurized gases were introduced into the water, and the 13CH3OH trapped 

in the water was analyzed by GC-MS (GCMS-QP2020 NX, Shimadzu).
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Figure S16 Comparison of (a) catalytic activity and (b) apparent activation energy for 

CO2 hydrogenation to methanol over the h-PdMo/Mo2N and h-PdMo catalysts under 

pressurized conditions (0.9 MPa). (Reaction conditions: 0.1 g catalyst, CO2:H2:N2 = 

10:30:10 mL min−1, 25-80 °C, 0.9 MPa). The apparent activation energy under ambient 

pressure is also shown in (b) for comparison.

Figure S17 XRD patterns for the h-PdMo catalyst before and after methanol synthesis 

at 0.9 MPa and 25 °C for 50 h.
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Figure S18 CO-TPD profiles for h-PdMo and Pd. The TPD experiment was performed 

with a 10 mL min−1 flow of Ar after CO adsorption at 35 °C. 
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Figure S19 DRIFT spectra for CO2 hydrogenation over the h-PdMo catalyst at various 

temperatures (25-80 °C).
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Figure S20 CO hydrogenation to methanol over the h-PdMo/Mo2N catalyst under 

atmospheric pressure. (a) Methanol synthesis rate as a function of reaction temperature. 

(b) Arrhenius plots for methanol synthesis. (c) Time course at 100 °C. (d) XRD patterns 

before and after methanol synthesis at 100 °C for 100 h.
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Figure S21 Synthesis rate of byproducts and product distribution during CO2 

hydrogenation over h-PdMo/Mo2N and Pd/Mo2N catalysts. (a) CO and (b) CH4 

synthesis rate as a function of reaction temperature. Product distribution during CO2 

hydrogenation over (c) h-PdMo/Mo2N and (d) Pd/Mo2N catalysts. Selectivity of 

products was determined by eq 1.

Selectivity of x species (%) = 100 × Fx,out / (Fmethanol,out + FCO,out + FCH4,out)         (1)

where Fx,out is the outlet flow rate of products (ml min−1). (Reaction conditions: 0.1 g 

catalyst, CO2:H2:Ar = 10:30:10 mL min−1, 60-180 °C, 0.1 MPa).
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Table S1 Compositional analysis results for the single phase sample (Pd/Mo = 1.08).

(wt %)

Pd Mo N O

EPMA 58.1 39.2 1.1 1.6

ICP-AES 51.3 44.5 - -

TPD - - 1.9 -

CHN - - 2.0 1.8

(mol%)

EPMA 48.2 36.1 6.9 8.9

Table. S2 Structural properties of the studied catalysts.

Amount of Pd (wt%)* Surface area (m2 g−1)

h-PdMo 51.3 2.6

h-PdMo/Mo2N 4.4 12.9

Pd/Mo2N 4.6 25.1

*Amount of Pd in each catalyst was determined by ICP-AES measurement.
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Table. S3 Apparent activation energies for CO2 hydrogenation to methanol over various 

Pd-based catalysts.

Activation energy (kJ mol−1) Reference

h-PdMo/Mo2N 27 This work

Pd/Mo2N 78 This work

Pd/SiO2 65 [2]

Pd-Zn/SiO2 58 [3]

Pd-Ga/SiO2 48 [3]

Ga2O3-Pd/SiO2 37-39 [4]

Pd0.1Zn1/CNT 57 [5]

Pd0.1Zn1/Al2O3 65 [5]

Pd/In2O3 84 [6]

Pd (PdMgAl HTlc)* 72 [7]

PdZn (PdZnAl HTlc)† 68 [7]

Pd2Ga (PdMgGa HTlc)‡ 59 [7]

*Pd-loaded catalyst derived from PdMgAl hydrotalcite. †PdZn-loaded catalyst derived 

from PdZnAl hydrotalcite. ‡Pd2Ga-loaded catalyst derived from PdMgGa hydrotalcite.
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Table S4 TOFs over the h-PdMo catalyst, other reported room-temperature methanol 

synthesis catalysts, and conventional Cu or Pd-based catalysts.

Catalyst T (ºC) P (MPa) TOF (h−1) Reference

h-PdMo 25 0.9 0.15* This work

Ir complex 30 4 0.02† [8]

FL-MoS2 25 5 0.09-0.52‡ [9]

Cu/ZnO/Al2O3 100 7 0.05† [10]

Pd/CNT 250 2 0.33† [11]

Pd/SiO2 250 2 0.06† [11]

Pd/AC 250 2 0.11† [11]

*TOF calculated from the rate of methanol synthesis divided by the total metal sites. 

The total metal sites was estimated from the BET surface area, assuming that all 

surfaces are metal atoms (Pd:Mo = 6:4). †TOF calculated from the rate of methanol 

synthesis divided by total metal (Ir, Cu, or Pd) sites. ‡TOF calculated based on a method 

in the literature.9 The highest and lowest TOFs were calculated on the basis of the 

amount of exposed sulfur vacancies or Mo atoms. The average value of the highest and 

lowest TOFs was then calculated as the TOF of the FL-MoS2 catalyst. 
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Table. S5 CO2 conversion over the h-PdMo/Mo2N catalyst under different reaction 

conditions.

P (MPa) T (°C) Conversion (%)*

0.1 60 0.002

0.1 80 0.014

0.1 100 0.036

0.1 120 0.096  (0.104)

0.1 140 0.211  (0.207)

0.1 160 0.460  (0.467)

0.1 180 0.943  (0.939)

0.9 25 0.004

0.9 40 0.006

0.9 60 0.012

0.9 80 0.020

*Since it is difficult to quantify tiny changes in CO2 flow rate especially in reactions 

below 100°C, CO2 conversion was determined by eq 2.

CO2 conversion (%) = 100 × (Fmethanol,out + FCO,out) / FCO2,in                     (2)

where FCO2,in is the inlet flow rate of CO2 (ml min−1) and Fx,out is the outlet flow rate of 

products (ml min−1). The parentheses indicate the CO2 conversion determined by eq 3.

CO2 conversion (%) = 100 × (FCO2,in − FCO2,out) / FCO2,in                        (3)
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The values of the CO2 conversion obtained from both equations are comparable, and the 

mass balances for carbon generally fulfilled.
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