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SUMMARY
Methods for acquiring spatially resolved omics data from complex tissues use barcoded DNA arrays of low-
to sub-micrometer features to achieve single-cell resolution. However, fabricating such arrays (randomly
assembled beads, DNA nanoballs, or clusters) requires sequencing barcodes in each array, limiting cost-
effectiveness and throughput. Here, we describe a vastly scalable stamping method to fabricate polony
gels, arrays of �1-micrometer clonal DNA clusters bearing unique barcodes. By enabling repeatable enzy-
matic replication of barcode-patterned gels, this method, compared with the sequencing-dependent array
fabrication, reduced cost by at least 35-fold and time to approximately 7 h. The gel stamping was imple-
mented with a simple robotic arm and off-the-shelf reagents. We leveraged the resolution and RNA capture
efficiency of polony gels to develop Pixel-seq, a single-cell spatial transcriptomic assay, and applied it tomap
themouse parabrachial nucleus and analyze changes in neuropathic pain-regulated transcriptomes and cell-
cell communication after nerve ligation.
INTRODUCTION

Spatially barcoded DNA arrays are increasingly used for in situ

capture and sequencing of RNAs and proteins to map the struc-

ture and function of heterogeneous tissues (Chen et al., 2022;

Cho et al., 2021; Rodriques et al., 2019; Stahl et al., 2016; Stick-

els et al., 2021; Vickovic et al., 2019, 2022). To achieve single-cell

resolution, DNA arrays require features significantly smaller than

cells to delineate different shapes. Traditional spotting (DeRisi

et al., 1996; Schena et al., 1995) or light-directed synthesis (Fo-

dor et al., 1991) methods for the deposition or in situ synthesis of

sequence-defined oligonucleotides at specific array positions on

a substrate often generate features larger than mammalian cells

(>10 mm) with significant gaps to prevent feature merging.

Recent advances of spatial transcriptomics utilized random ar-

rays of smaller features such as DNA-coated beads (Rodriques

et al., 2019; Vickovic et al., 2019), DNA nanoballs (Chen et al.,

2022), and polymerase colonies (known as polonies [Gu et al.,

2014] or DNA clusters [Cho et al., 2021]), all requiring decoding

feature barcodes by sequencing each array in specialized flow-
C

cells. The barcode sequencing is a major cost- and rate-limiting

factor of scaling up the array production; for example,

sequencing barcodes in 38 tiles of 0.8 mm2 in an Illumina MiSeq

flowcell (Cho et al., 2021) added a cost of �$30 per mm2 and a

time of 3–4 h per run, scaling linearly with barcode length and

array size. It is desirable to develop sequencing-independent

fabrication, which requires a paradigm shift in our underlying

approach.

A possible method for simple and fast array fabrication is mi-

crocontact printing (Xia and Whitesides, 1998) using an elasto-

meric stamp to simultaneously copy arrayedmolecules to a sub-

strate. However, it has been an unsolved problem to construct a

barcoded array on a stamp allowing consecutive printing without

progressive decline of feature resolution and printed DNA

amounts. Here, we report that polonies formed on the surface

of an elastomeric, crosslinked polyacrylamide ‘‘stamp gel’’ as

templates can be efficiently copied to many ‘‘copy gels’’ by

DNA polymerase-catalyzed chain extension (Figure 1A). The

gel-to-gel replication reliably achieved sub-micrometer resolu-

tion because all primers and templates are covalently attached
ell 185, 4621–4633, November 23, 2022 ª 2022 Elsevier Inc. 4621

mailto:gulc@uw.edu
https://doi.org/10.1016/j.cell.2022.10.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2022.10.021&domain=pdf


Figure 1. Fabrication and characterization of polony gels

(A) Schematic of the amplifiable DNA stamping. USER-linearized single-stranded polonies are copied from a stamp to many copy gels. Copied DNAs are further

bridge-amplified to complete the replication. A few copy gels are used as the stamp for next fabrication or for polony sequencing to create a spatial barcodemap;

the majority are used for tissue mapping assays.

(B) A gel-to-gel DNA copying process automated with a stamping device.

(C) Millimeter-scale images of SYBR Green-stained polonies in a stamp and a copy gels. For comparison, templates were seeded on the masked,�40-mm-thick

stamp gel and amplified to polonies showing a pattern of the word ‘‘Pixel.’’

(D) Images of SYBR Green-stained polonies from the second, 10th, and 50th stamping cycles. The low-density polony gels (�105/mm2) were selected to facilitate

visual comparison.

(E) 3D intensity profiles of SYBR Green-stained, discrete, and continuous polonies amplified from templates seeded at the same density by 35 cycles.

(legend continued on next page)
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to the gels to prevent DNA diffusion. Unlike traditional stamping

requiring ‘‘re-inking’’ a stamp for consecutive printing (Lange

et al., 2004), the enzymatic replication does not consume tem-

plates on the stamp. Notably, the stamping is also facilitated

by DNA bridge amplification (Bentley et al., 2008) on gel surfaces

to achieve a high copying efficiency and intensify faint prints. To

obtain a spatial barcode map for a series of prints, only one or a

few copy gels need to be sequenced. Additionally, copy gels can

serve as stamps for next fabrication rounds. By utilizing polony

gels, we demonstrated polony-indexed library-sequencing

(Pixel-seq) for tissue mapping with high resolution and RNA cap-

ture efficiency (e.g., a mean of �1,000 unique molecular identi-

fiers [UMIs]/10 3 10 mm2 in mouse tissue).

We applied Pixel-seq to analyze the mouse parabrachial nu-

cleus (PBN), a brain region in the pons for relaying sensory infor-

mation (e.g., visceral malaise, taste, temperature, itch, and pain)

to forebrain structures (Palmiter, 2018). Its heterogeneous struc-

ture and cell components remain poorly understood. By creating

the first cell atlas of the PBN, we identified region-specific distri-

butions of previously known and newly found neuron types. By

precise anatomical and transcriptomic comparison of PBN neu-

rons and glial cells, we analyzed changes in neuropathic pain-

regulatedgeneexpression andcell-cell communication in the ho-

meostatic adult brain as important adaptations to chronic pain.

RESULTS

Polony gels enable amplifiable DNA stamping and show
a continuous feature distribution
We selected the crosslinked polyacrylamide as stamp and copy

gels allowing the low-pressure, conformal contact and the

bridge amplification of template and copied DNAs. To automate

the stamping process, a benchtop devicewas built with a robotic

arm to position the stamp, a thermocycler to control the gel tem-

perature, a digital balance tomonitor the stamping pressure, and

a fluidic system to amplify DNAs (Figures 1B and S1A). Different

from previous methods that generated gel-embedded polonies

(Gu et al., 2014; Mitra and Church, 1999), we amplified polonies

on gel surfaces (Figure S1B) to facilitate DNA replication be-

tween gels. We first compared gels of varied thicknesses

attached to different sized glass surfaces; the efficient DNA

copying between large gel areas was observed at increased

gel thicknesses (e.g.,R40 mm; Figure 1C). To test reproducibility

and robustness, the stamping was consecutively performed for

50 cycles. Feature patterns found on the copy gels were largely

consistent (Figure 1D) and stable at varied stamping pressures

(Figures S1C and S1D).
(F) Four-channel sequencing images of two high-density polony gels (�8 3 105/m

generated by the pixel-level base calling.

(G) Boxplot of the percentages of polonies in copy gels matched the consensus.

polonies; error bars, SD.

(H) 2D and 1D density plots of relative positions of polony centers in copy gels from

11,441 for polonies at the low and high densities, respectively.

(I) Boxplot of barcode error rates in eluted DNAs from two copy gels detected b

(J) Comparison of polony bridge amplification efficiencies for two gel substrates. T

(K) Violin plot of measured diameters of polonies at different densities. n = �0.6

See also Figure S1.
High-density polonies (R0.6 million/mm2) often form a contin-

uous DNA distribution with minimal feature-to-feature gaps,

distinct from those amplified in Illumina nonpatterned flowcells

showing a discrete, peak-shape distribution (Figure 1E). To un-

derstand the difference, we found that polonies on gel surfaces

have a faster size expansion likely due to decreased gel con-

straints on the bridge amplification. These polonies appear to

be easily accessible to restriction digestion; 93.6% of double-

stranded DNAs were digested by TaqI to expose a 30 poly(T)
probe (Figure S1E). For spatial transcriptomic assays, the even

distribution of poly(T) probes can minimize variations in RNA

capture efficiency across DNA arrays. Although polonies are

connected, they intend not to interpenetrate due to a polony

exclusion effect (Aach and Church, 2004). Even at a high density,

their borders were clearly delineated by polony sequencing (Fig-

ure 1F). Because polonies have varied sizes and shapes, to

maximize the feature resolution we developed a base-calling

pipeline to determine the major barcode species in each pixel

(0.3253 0.325 mm2) of gel images to construct a spatial barcode

map (Figure S1F).

The efficient replication of polony gels requires the post-stamp-

ing bridge amplification of copied DNAs, which increases DNA

densities and compensates for the inefficient copying in some

gel areas. However, more amplification can cause polony size

expansion and thus center drifts, and introduce errors to spatial

barcodes, compromising the resolution and accuracy, respec-

tively. To assess this issue, we quantitively compared copy gels

fabricated in a consecutive stamping experiment by analyzing

feature patterns in multiple gel regions. Individual gels were

comparedwithaconsensus featuremapconstructed fromaligned

images of three copy gels. The repeated stamping is robust and

only lost <15% of features after 50 cycles, likely due to gradual

template loss on the stamp (Figure 1G). Polony center drifts were

found todecreaseatahigherpolonydensity; for example, the frac-

tionof thosebelow0.5mmincreased from65.7%at�13105/mm2

to 86.0%at�83 105/mm2 (Figure 1H), possibly due to decreased

polony sizes at the increased density. By sequencing 24-base pair

spatial barcodes, 93.43 ± 0.04% of matched polonies in two gels

were found with matched spatial barcodes with up to two mis-

matched bases (Figure 1I). Amplified polonies comprise ultra-

dense capture probes; for example, the amplification yielded an

average of 20,337 template copies per polony after 35 cycles, a

�9-fold increase from an Illumina method (Bentley et al., 2008)

(Figures 1J, S1G, and S1H). With our sequencing imaging setup,

we reliably fabricated gels with �0.6–0.8 million features

per mm2 passing filter and a mean feature diameter of 1.07 to

0.906 mm (Figure 1K). Fabricating higher-resolution gels with
m2) from the second and tenth stamping cycles. A spatial barcode map was

Data represent means of six sampled gel positions, each found with 195–332

the consensus. Dash circles denote center drifts of 0.5 and 1 mm. n = 4,521 and

y Illumina sequencing.

he linear polyacrylamide coating was prepared by a reported Illumina method.

to 1 million.
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Figure 2. Pixel-seq-based single-cell spatial transcriptomics

(A) Principle of Pixel-seq. RNAs are captured from the gel-touching cell layer in a cryosectioned tissue to synthesize barcoded cDNAswith a 30 universal sequence
introduced from a template-switching oligo for cDNA amplification. cDNAs are sequenced to associate RNAs to their gel locations to create a transcript map. A

k-nearest neighbor network is built on the map where each barcode represents a node. Edge weights are calculated as a function of UMI counts, the distance,

and transcript similarity between two connected barcodes. The weighted network is segmented by a graph-based algorithm to create cell masks to aggregate

transcripts for single-cell data analyses.

(B) Confocal analysis of stained nuclei in a mouse OB section attached to a gel and labeled cDNAs synthesized on the gel. Two detected layers of nuclei proximal

(0 mm) and distal (6 mm) to the gel surface are overlaid with cDNA signals.

(legend continued on next page)
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smaller and denser features is possible because even more

crowded polonies still show clear boundaries (Figure S1I) but

sequencing them requires improved imaging resolution.

Demonstration of single-cell spatial transcriptomics on
the mouse olfactory bulb
We developed Pixel-seq (Figure 2A) with a focus on translating

the 1-mm feature resolution to the single-cell resolution of the

assay for complex tissues such as the brain. To test assay con-

ditions and compare the performance, we analyzed the mouse

olfactory bulb (OB) with morphologically diverse cells organized

in a layered structure commonly used to validate spatial tran-

scriptomic assays (Chen et al., 2022; Rodriques et al., 2019;

Stahl et al., 2016; Stickels et al., 2021; Vickovic et al., 2019).

We looked at two common issues of the array-based assays

limiting the single-cell resolution, the lateral RNA diffusion be-

tween cells and the mixing of RNAs from multi-layered cells

found even in thin tissue slices. The polony gel-based RNA

capturing, even without tissue fixation, yielded strong cDNA sig-

nals clearly delineating boundaries of neuronal cell bodies (Fig-

ure S2A). By comparing cell sizes detected by Pixel-seq and

RNAscope, the median template drift was estimated to be

�0.86 mm (Figure S2B), smaller than the average polony size,

suggesting that the gel-restrained diffusion does not severely

compromise the feature resolution. Of note, the gels appeared

to capture tissue RNAs from a single cell layer when frozen sec-

tions were placed on the dried gels; yielded cDNA signals were

colocalized with stained nuclei in the gel-contacting cells and

not those in a deeper tissue (Figure 2B). The selective RNA

capturing can be explained by fast occupancy of a gel surface

by adjacent RNAs during the gel wetting by a tissue section (Fig-

ure S2C). The gel-based capture not only increased the resolu-

tion but also facilitated a fast preparation of cDNA sequencing li-

braries (�6 h; see STAR Methods).

To assess the performance, we assayed 10-mm, coronal OB

sections to obtain spatially resolved transcriptomes. Specif-

ically, in a �13-mm2 OB section, �83% of raw reads were map-

ped to the barcodemap to obtain�82.5 million UMIs with a den-

sity range from 1 to 678 UMIs/barcode. The UMI density map

displays a continuous, pixel-resolution, multi-layered structure

(Figure 2C, panel i). The enlarged view shows marked density

patterns rising from specific cell distributions in the ultrathin tis-

sue layer, distinct from more even UMI distributions found by

similar assays such as Stereo-seq (Figure 2C, panel ii), where
(C) Comparison of OB UMI density maps by RNA captures from a single (Pixe

measured on 23 2 mm2 bins. (ii) Zoom-in comparison of the selected regions in (i)

whole tissues. Means (dash lines): 45.6 and 60.5; maxima: 1,979 (Pixel-seq) and

(D) Comparison of selected gene expressions detected by Pixel-seq and the AM

(E) Comparison of the capture efficiency of Pixel-seq and recent data from simila

(2 mm) and 33 3 33 (10 mm; a cutoff of 265 UMIs) pixels.

(F) Validation of the V-seg result by overlaying segmentedmasks with stained nucl

with SYTOX Green, stained nuclei were imaged with the epifluorescence micros

(G) Comparison of the accuracy of V-seg, labeled cDNA image segmentation, a

validated by the colocalization with nuclei described in (F). (a) Masks containing sin

those overlapped with multiple or zero nuclei.

(H) Comparison of cell annotation outcomes of the segmentation by V-seg and ra

annotation or unsupervised clustering. See full names of cell types in Figure S2G

See also Figure S2.
RNAs released from multiple cell layers were likely captured un-

der the assay condition. Although less RNAs were expected to

be found in single than multiple cell layers, our mapped UMIs

had a wider density range with a higher maximum (Figure 2C,

panel iii), demonstrating the high capture efficiency. About

23,000 unique genes were detected with over 10 UMIs in at least

one of three replicates; the data showed high correlation (R R

0.968; Figure S2D). Detected OB layer-specific gene expres-

sions agree with the in situ hybridization (ISH) data from the Allen

Mouse Brain Atlas (AMBA) (Figure 2D). Together, compared with

other assays, Pixel-seq achieved the high resolution and sensi-

tivity (Figure 2E and Table S1).

With the high-resolution transcript maps in hand, we sought to

segment mapped transcripts into single cells. Our simulation

with seqFISH-mapped mouse cortex data (Eng et al., 2019) sug-

gests that the 1-mm feature resolution is sufficient to separate

regular cell bodies (Figure S2E). However, it is challenging to

trace all cell boundaries with standard staining methods and

use the confocal images as ‘‘references’’ to guide cell segmen-

tation. So far, array-captured brain transcripts were often

randomly segregated in spatially aggregated pixels or random

bins (Chen et al., 2022; Rodriques et al., 2019; Stahl et al.,

2016; Stickels et al., 2021; Vickovic et al., 2019). The refer-

ence-independent segmentation is highly desirable, but avail-

able algorithms (e.g., Baysor [Petukhov et al., 2022]) were devel-

oped for imaging-based data on selected genes (Codeluppi

et al., 2018; Moffitt et al., 2018) and cannot be directly applied

to the global transcriptome data. Thus, we developed a vol-

ume-distance-based segmentation algorithm (V-seg) which

constructs a nearest neighbor network frommapped transcripts,

calculates edge weights (termed volume distances) based on

UMI densities, the spatial distance and transcript similarity be-

tween two neighboring barcodes, and then segments the

weighted network into masks representing single cells by a

computationally efficient, graph-based community detection al-

gorithm (Figure 2A [right three panels] and S2F).

We applied V-seg to segment the OB data, validated the re-

sults with the nuclear staining images, and compared the perfor-

mance with image-based segmentation and random bins. In the

OB section, V-seg segmented �86% (�70.8 million) of mapped

transcripts into 23,351 masks; 22,830 with UMIs R256 were

selected for cell classification. Unsupervised clustering (Hao

et al., 2021) of segregated transcripts recapitulated layer-spe-

cific distributions of major neuronal and non-neuronal cell types
l-seq) and multiple layered cells (Stereo-seq). (i) Maps of total UMI densities

(white dotted boxes). (iii) Density plot of detected UMIs in 23 2 mm2 bins in the

1,091 (Stereo-seq).

BA ISH data.

r assays (see Table S1). The Pixel-seq OB UMIs were counted on bins of 73 7

ei in the same tissue. Immediately after placing the tissue on the gel pre-soaked

cope used for polony gel sequencing.

nd random bins of a size close to the average V-seg mask size. Results were

gle nuclei; (b) masks partially overlapped with single nuclei; (c) others including

ndom bins. Aggregated transcripts were analyzed by scRNA-seq data-guided

.
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Figure 3. Single-cell spatial transcriptomic mapping of the PBN

(A) Anatomical structure and UMI density map of a middle coronal section comprising the PBN (red) and neighboring regions. PBNl, lateral PBN; PBNm, medial

PBN; KF, Kölliker-Fuse subnucleus; sctv, ventral spinocerebellar tract; scp, superior cerebellar peduncle; CBX, cerebellar cortex; IC, inferior colliculus; CUN,

cuneiform nucleus; PSV, principal trigeminal sensory nucleus; V, trigeminal motor nucleus; LC, locus coeruleus.

(B) Violin plots of selected top genes showing differential expression in each cluster.

(C) Uniform Manifold Approximation and Projection (UMAP) clustering of the transcripts segregated into�60,000 masks from four middle PBN sections passing

quality control metrics. Astro, astrocyte; Oligo, oligodendrocyte; EC, endothelial cell; VLMC, vascular and leptomeningeal cell.

(D) UMAP clustering of the data representing 31,505 neuronal cells isolated from (C) with definedmarker gene(s) for each cluster. Dotted lines highlight examples

of separated subclusters from non-separated clusters in (C).

(E) Spatial distribution of major neuronal subtypes in the PBN and V.

(F) 3D mapping of PBN Tac1 (brown) and Calca (green) neurons. Stacked bars denote cell counts.

(G) Cell-cell contact heatmap of annotated clusters in (C) and (D). Cell contacts were quantified by a PCCF colocalization statistic.

See also Figure S3.

ll
Resource
identified by single-cell RNA sequencing (scRNA-seq) (Tepe

et al., 2018) (Figure S2G). To validate segmented cells, masks

were aligned to stained nuclei in the same tissue (Figure 2F); to

facilitate data registration, tissue images were acquired with

the same microscope and magnification for the gel sequencing.

Compared with random bins, V-seg and cDNA signal-guided

segmentation, like the poly(A) staining-guided segmentation in

other assays (Codeluppi et al., 2018; Moffitt et al., 2018), gener-

ated respectively 1.95- and 2.46-fold more masks containing a
4626 Cell 185, 4621–4633, November 23, 2022
whole nucleus and 3.10- and 2.65-fold less masks partially over-

lapped with single nuclei (Figure 2G). About 36%of V-segmasks

contained multiple or no nuclei partly because some nuclei

were not in the gel-contacting cell layer (Figure 2B). The

improved segmentation by V-seg is confirmed by the high simi-

larity between the unsupervised clustering and scRNA-seq data-

guided annotation results (Figure 2H), measured cell body sizes

close toprevious report (Pinching andPowell, 1971) (FigureS2H),

and the consistency between mask shapes and marker gene
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distributions (Figure S2I). Segmented cells show cell-type-spe-

cific UMI densities (Figure S2J) and their UMI counts typically

increase with cell sizes; for example, the means of periglomeru-

lar type 1 (PGC-1; a mean diameter of 10.9 ± 4.6 mm) and mitral/

tufted cells (M/TCs; 14.5 ± 4.8 mm) were 3,346 and 6,458 UMIs/

cell, respectively. Our result reasonably agrees with the scRNA-

seq data on gene expression (R = 0.722; Figure S2K) and cell

type abundances (Figure S2L); the discrepancies are mostly

due to the partial capture from cell pieces by Pixel-seq and cell

losses in the dissociative assay.

Cell atlas of the PBN
We looked at the PBN packed with neuron clusters (or nuclei), a

common structure in the brain distinct from theOB layered struc-

ture, which is hard to analyze without single-cell resolution. The

PBN relays sensory information from the periphery to the fore-

brain, responding to internal and external stimuli, as well as

maintaining homeostasis (Palmiter, 2018). Previous studies us-

ing unique genetic markers located neurons within the PBN

that transmit distinct signals related to thermal sensation (Norris

et al., 2021), pain (Huang et al., 2019), appetite, visceral malaise,

and threat detection (Campos et al., 2018). However, the identity

of most cells in the PBN and their spatial organization were

unknown.

We first analyzed PBN coronal sections in themiddle (bregma,

�5.35 mm) with the largest cross section. With a sequencing

depth of �88%, each section yielded 21 ± 4.5 million UMIs

located to a�33 3mm2 region centered on the PBN surrounded

by the cerebellar cortex (CBX), trigeminal motor (V) and principal

sensory nuclei (PSV), locus coeruleus (LC), and cuneiform nu-

cleus (CUN) (Figure 3A). The UMI density map allows charting

PBN subregions such as the lateral (PBNl) and medial (PBNm)

divided by the superior cerebellar peduncle (scp), a large fiber

tract showing distinctly fewer UMIs. Mapped transcripts were

aggregated into 15,618 ± 1,093 cell masks per section. Unsuper-

vised clustering by Seurat defined distinctive marker genes (Fig-

ure 3B), which were compared to the consensus in https://

mousebrain.org (Zeisel et al., 2018) to identify 21 neuronal and

non-neuronal cell types (Figure 3C). Further subclustering of

neurons identified 18 subtypes (Figure 3D).

To assess the robustness of the clustering, the spatial patterns

of clustered cells were compared to the AMBA anatomic refer-

ence (Figure S3A). Most of clustered cells exhibit region-specific

distributions correlated with the anatomical structure of the PBN

and surrounding regions (Figures S3B and S3C). For example,

�81.0 and �53.2% of clustered Calca/Nts+ and Tac1+ neuron

subtypes were found in different subregions of the PBNl (Fig-

ure 3E), consistent with previous reports (Barik et al., 2018; Cam-

pos et al., 2018). The Calca+ neurons in the PBN and the trigem-

inal region were separated by differentially expressed markers

(e.g., Sncg); the latter were correctly segmented from mixed tri-

geminal motor neurons (Sncg/Uchl1+) in the same region.

Additionally, two unknown PBN neurons were identified: the

Resp18/Ctxn2+ subtype in the PBNl’s dorsal and ventral subnu-

clei, the Sst/Resp18+ in the central subnucleus, and both also in

the PBNm (Figure 3E). Their locations overlap with areas

involved in a taste-guided behavior (Jarvie et al., 2021). Some

non-neuronal cells also show region specificity; for example,
the most abundant astrocyte subtype, Astro1, was enriched in

the PBN and the neighboring pontine central gray region

(Figure S3B).

Tostudy the three-dimensional (3D) heterogeneity,weanalyzed

the anterior,middle, andposterior sectionsof the samePBNsam-

ple (bregma,�5.20,�5.35, and�5.50mm, respectively). Distinct

changes along the rostral-caudal extent of the PBN were

observed for distributions of major neuropeptide-expressing

genes (Figure S3D) and validated by the AMBA ISH (Figure S3D)

and RNAscope data (Figure S3E), implying transcriptomic and

anatomical heterogeneity. We focused on the two known neuron

subtypes in the same subnucleus, Calca/Nts+ and Tac1+. The

clustering, as well as the spatial marker gene distributions, re-

vealed their 3D organization: the Tac1+ cells are densely popu-

lated in the anterior position and surround the Calca/Nts+ in the

middle position, and both are overlapped in the posterior position

(Figure 3F).

Because the distance between cells affects their communica-

tion, wemeasured direct cell contacts in the PBN atlas. Adjacent

cells were quantified using a pair cross-correlation function

(PCCF) statistic (Philimonenko et al., 2000) to compare detected

cell contacts (or colocalization) between the same or different

subtypes to the probability of the random colocalization. The

high colocalization between the same cell types agrees with

observed cell aggregations; for example, the Purkinje (Pcp2/

Pvalb+) and Bergmann (Timp4/Aldoc+) cells in the cerebellum

and CGRP-expressing neurons (Calca/Nts+) in the PBN (Fig-

ures 3G and S3C). High neuron-neuron contacts were found

for the Calca/Nts+ and Tac1+ in the PBNl and the Calca/Sncg+

and Sncg/Uchl1+ in the trigeminal. Typically, cells showing re-

gion-specific distributions were found with preferential contacts

with specific neurons or non-neuronal cells.

Cell type- and subnucleus-specific transcript changes
in response to chronic pain
After having the transcriptome reference map, we sought to

discover if our method could detect changes in gene expression

in response to stimuli. The precise analysis of activity-triggered

adaptations in specific cells requires comparison of functionally

identical cells (e.g., the same cell type in identical brain regions

and with similar connectivity) from different animals. To demon-

strate the transcriptomic and anatomical accuracy of Pixel-seq

for this application, we analyzed chronic-pain-regulated

changes in the PBN. The PBN is known to be a major hub to

receive, process, and relay nociceptive signals (Palmiter, 2018;

Sun et al., 2020). As part of adaptations to neuropathic pain,

PBN cells are likely to mount complex transcriptional responses

(Yap and Greenberg, 2018). However, such changes, as well as

many others in different brain regions, are yet to be unveiled.

We assayed coronal PBN sections from animals that received

either a sham operation or partial sciatic nerve ligation (SNL)-

induced neuropathic pain (30th day post-surgery). To facilitate

comparing cells in identical anatomical sites, we divided the sec-

tions into four subregions (two PBNl and two PBNm) and the V

(Figure 4A). To minimize variations caused by individual hetero-

geneity and the sectioning of brain samples, we focused on

comparing two middle sections showing the highest cluster sim-

ilarity (Figures 4B, S4A, and S4B). Unsupervised clustering of
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Figure 4. Chronic-pain-regulated gene expression in PBN subnuclei

(A) Comparison of the Pixel-seq data of sham and pain mice at anatomically identical PBN and V subregions. SNL (30 days), 30 days post-partial sciatic nerve

ligation.

(B) UMAP analysis to compare clusters in two middle coronal PBN sections from sham and SNL mice. Segmentation data representing 15,833 neurons and

16,473 non-neuronal cells are plotted. Major neurons (Neu), astrocytes (AS), and microglia (M) in the PBN and V are labeled.

(C) Differential abundance analysis of the data in (B). Dotted lines highlight the PBN and V region-specific neuronal clusters.

(D) Differential expression analysis of the data in (B). FC, fold change. Colored genes, |log2FC|R 0.25 and p < 0.05, Wilcoxon rank-sum test. The upregulation of

Xist was only found in female mice.

(E) Gene Ontology (GO) enrichment analysis of differentially expressed genes in the major neuronal clusters in the PBN and V. p values, Fisher’s exact test.

(F) Comparison of region- and cell-type-specific expression of major neuropeptide genes. Data represent mean values of R217 cells in each group; error bars,

SEM. *p < 0.05, **p < 0.01, ***p < 0.001, Wilcoxon rank-sum test.

(G) Comparison of spatial patterns of the neuropeptide genes in (F) and associated cells.

See also Figure S4.
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32,377 cells pooled from the two sections identified 16 neuronal

and 12 non-neuronal subtypes. A differential abundance anal-

ysis (Zhao et al., 2021) of the sham and SNL mouse data de-

tected a remarkable imbalance of cell distributions (Figure 4C),
4628 Cell 185, 4621–4633, November 23, 2022
which is corroborated by changed levels and spatial patterns

of individual genes (Figure S4C). Differential gene-expression

analysis found 487 genes in neurons and 181 in non-neurons

with altered expression, including 16 encoding secreted proteins
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(p < 0.05; Figure 4D); for example, 1.23 to 1.85-fold decreases

(p < 0.05) of Apoe in glial subtypes, in contrast to the upregula-

tion in other injury and disease models (Pfrieger and Ungerer,

2011), implying its multifaceted role in inflammation and pain

modulation in the PBN. These genes in neuronal clusters were

predicted to be differentially involved in neuron development,

stress responses, inflammation, etc. (Figure 4E).

We next asked how genes are regulated in specific cell types

within subnuclei. Of particular interest is how neuropeptide gene

expression responds to the pain condition. Thus, we analyzed

transcriptional changesofpeptideprecursorgeneswithin thecho-

sen PBN sections. Calca, the gene encoding CGRP, was slightly

upregulated (1.55-fold, p= 6.07310�6) inmotor neurons in the tri-

geminal (Neu5), but not significantly in the PBN (Neu6) (Figures 4F

and 4G). Scg2 and Cck were downregulated by 2.54- and 2.82-

fold (p < 0.001), respectively, with regional specificity: Scg2

decreased across the PBN, butCck changedmainly in the subre-

gion 2 populated by Resp18/Ctxn2+ neurons. Notably, Penk,

encoding an opioid precursor, showed decreased expression in

subregions 1 and 3: 2.13- and 3.03-fold, respectively (p < 0.001),

but a 3.07-fold increase in the subregion 2 (Neu1 and Neu2;

p < 0.05). These examples, along with all the other changes, pro-

vide valuable clues for future functional experiments.

Cell-cell communication coordinated by transcriptional
dynamics of microglia and astrocytes
Given the reference and pain-induced transcriptome maps, we

asked how gene regulation affects local cell-cell communica-

tion. To quantitatively compare cell-signaling networks, we

computed signaling likelihoods for each cell as ‘‘sender’’ or

‘‘receiver’’ using ligand and receptor transcript levels and spatial

distances from other senders and receivers (Figure S5A) (Cang

and Nie, 2020). Because transcripts are mainly detected in cell

bodies and it is difficult to analyze the long-distance communi-

cation mediated by cell projections, neurons and non-neuronal

cells were treated equally in this analysis. The comparison of

signaling likelihoods between the sham and SNL mouse data-

sets indicates that the major changes in the PBN region were

associated with microglia and astrocytes (Figure S5B) known

to coordinate neuronal development and homeostasis (Vain-

chtein and Molofsky, 2020). A subcluster-level analysis of

signaling between microglia (M), astrocytes (AS1–AS5), and ma-

jor PBN neuron subtypes (N1–N4 and N6–N8) revealed subclus-

ter-specific increases or decreases in microglial and astrocyte

signaling likelihoods (Figure 5A). A detailed comparison of the

contributions by individual ligand-receptor(s) pairs found that

top contributors are neuropeptides, cytokines, glycoproteins,

lipoproteins, and their receptors (Figure 5B). Furthermore, to

understand the signaling heterogeneity, cells of a sender sub-

cluster were profiled for the contribution by each ligand. Inter-

estingly, the senders showed a bimodal (e.g., Mif in N2 and

Apoe in AS1) or unimodal distribution (e.g., Spp1 in N3 and

C1qb in M), and the pain-responsive and non-responsive sub-

populations appeared to be separated in the bimodal distribu-

tion where the responsive cells had higher signaling likelihoods

than the non-responsive (Figure 5C).

Given the signaling importance of microglia and astrocytes,

we further investigated their transcriptomic heterogeneity. To
date, microglial heterogeneity associated with physiologic

roles, such as supporting synaptic development and remodel-

ing in the homeostatic adult brain, is yet to be confirmed by

scRNA-seq (Li et al., 2019) because microglial gene regulation

is environmentally sensitive and can be easily disrupted by tis-

sue dissociation (Gosselin et al., 2017). Here, 584 cells with mi-

croglial markers (e.g., C1qa and C1qb) were re-clustered into

two subtypes, M1 and M1* (Figure 5D [left] and S5C). Despite

their similarity, M1* was annotated with specific immune

response-regulatingmarker genes (e.g.,Mif and Sod1) involved

in an interleukin-12 (Il-12)-mediated signaling pathway (p =

6.68 3 10�5) and neutrophil-mediated immunity (p =

5.22 3 10�4) (Figure S5D). M1* is different from an activated

neuroinflammatory state induced by lipopolysaccharide (Lid-

delow et al., 2017) due to the lack of three marker genes, Il1a,

Tnf, and C1q. Considering a strong association between their

marker genes in immune regulation, M1* could represent a

transition state to the activated microglia. Under the pain con-

dition, M1* decreased from 33.6% to 22.0% of the microglial

population ( Figure 5D [right]). Given the different ligand and re-

ceptor profiles of M1 and M1*, the decrease of M1* is associ-

ated with the changed communication in the signaling net-

works. Microglia showed a relatively even spatial distribution

(Figure 5E) likely due to their high motility in the tissue.

Likewise, we sought to correlate transcriptomic and signaling

heterogeneity of astrocytes identified from the initial clustering.

4,471 cells were re-clustered into eight subtypes annotated

with marker genes (Figures 5F and S5E); most of the subclusters

are connected, suggesting a continuum of transcriptomic states.

As expected, some subtypes had region-specific distributions

(Figure S5F). In the clustering outcome, the pain-induced major

changes were found in the subtypes 2 and 3, which is supported

by the differential abundance analysis (Figure 5G [left]). To under-

stand the transcriptomic changes, we analyzed the pseudo-tem-

poral ordering of all subtypes (Figure 5G [right]). Projection of the

whole-cell population along a pseudotime trajectory revealed

three separated groups, A1, A2, and Pan (Figure 5H), which can

be correlated with three astrocyte states with specific physiolog-

ical roles (Liddelow et al., 2017). For example, A1 and A2 astro-

cytes with differentially expressed Sparc and Sparcl1 are known

to have destructive and protective roles, respectively, in main-

taining homeostasis; thus, the increase of A1 is often associated

with neuroinflammation. Here, a significant decrease of A1,

mainly contributed by the subtypes 2 and 3, was found for the

SNL condition (p = 1.203 10�7), suggesting that pain adaptation

might involve an unknown neuronal protection mechanism.

Remarkably, the comparison of astrocyte spatial distributions

found that the A1 decrease was mostly in the PBN region, but

theother twostateshadnoobviouschanges (Figure5I). These re-

sults, together with the neuron-glia communication, provide

important evidence of the region-specific glial transcriptomic dy-

namics supporting local neuronal activities.

DISCUSSION

Amplifying polonies atop crosslinked polyacrylamide gels brings

advantages to the fabrication and application. The gel compati-

bility withmicrocontact printing and bridge amplification enabled
Cell 185, 4621–4633, November 23, 2022 4629



Figure 5. Chronic-pain-associated cell-cell communication and glial transcriptome dynamics
(A) Network representation of cell signaling likelihood changes for major neuronal, astrocyte, and microglial clusters with significant distributions in the PBN.

Signaling likelihoods were calculated by SpaOTsc.

(B) Dot plots of contributions of paired ligand-receptor genes to the changed signaling likelihoods in (A) in the most abundant astrocyte subtype (AS1) and

microglia (M). p-value, Kolmogorov-Smirnov (KS) test.

(C) Density plots of signaling likelihoods of selected ligand genes in sender clusters.

(D) UMAP analysis of the microglia and the subtype proportions under the sham and pain conditions.

(E) Spatial distribution of the microglial subclusters. Segmentation data representing 584 cells are plotted.

(F) UMAP clustering of the astrocytes under the sham and pain conditions. Segmentation data representing 4,471 cells are plotted. Triangles denote the sub-

clusters 2 and 3 showing the most significant changes.

(G) Differential abundance (left) and pseudotime (right) analyses of the data in (F). A pseudotime trajectory was inferred by Slingshot.

(H) Density plots of astrocyte subpopulations and the normalized expression of selected genes along the pseudotime trajectory in (G). p-value, KS test.

(I) Spatial patterns of the astrocyte subpopulations.

See also Figure S5.
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the submicron-resolution polony replication, reducing the fabri-

cation cost and time. For example, the consumable cost of

fabricating a 7 3 7 mm2 array of >30 million unique features

decreased to �$3 ($0.06/mm2; Table S2), a drastic reduction

from those reported for DNA cluster and nanoball arrays

(Table S3), and the time to �7 h (see STAR Methods). Unlike

similar assays (Chen et al., 2022; Cho et al., 2021) whose major

cost components were array costs, our assay cost is mainly

determined by the commercial sequencing of barcoded cDNA li-

braries (e.g., mapping a 1-mm2 mouse brain area required �20

million reads, a cost of�$60 using an Illumina NovaSeq S4 flow-

cell). By lifting the burden of sequencing each array anew, the gel
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replication opens opportunities to break existing limitations. The

sequencing requires placing DNAs in flowcells comprising glass

or silicon surfaces suitable for optical scanning. Without the

sequencing need, polony gels can be casted on other substrates

for expanded assay flexibility. Gels with overly dense polonies

(known as ‘‘overclustering’’), which could improve the feature

resolution but so far cannot be correctly sequenced, might

become useful by copying different stamping gels with lower-

density barcodes to the same copy gel. Finally, given the demon-

strated sensitivity and resolution, crosslinked gels offer an ideal

substrate for capturing tissue molecules. Their penetrable hy-

drophilic matrix appears to increase accessibility of densely
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patterned probes to tissue targets in a diffusion-constrained

environment.

Pain, a multidimensional experience, involves sensory, affec-

tive, and cognitive components in the periphery and brain. So

far, single-cell transcriptomics of pain-induced changes have

been limited to sensory tissues, such as dorsal root ganglion (Ku-

pari et al., 2021), but cells and responses in other components in

pain processing are largely unknown. Despite the importance in

elucidating pain mechanisms and developing new analgesics,

research in this field has been hampered by the lack of suitable

tools. In this regard, Pixel-seq directly addresses the unmet

need. The first single-cell PBN atlas and the unveiled pain-regu-

lated changes in the spatially resolved transcriptomes provide a

basis for future mechanistic studies on the PBN’s roles in affec-

tive motivational and sensory discriminative pathways of pain

and other processes. Although limited samples were analyzed,

the unusual heterogeneity revealed by Pixel-seq highlights the

necessity to analyze more anatomical positions at different

time points to develop a complete view of the structural and

functional landscape.

LIMITATIONS OF THE STUDY

Due the timing of developing the stamping method, the OB and

PBN data were collected with sequenced gels. Despite the

improved feature resolution, DNA array-based spatial transcrip-

tomic assays still face challenges to reliably achieve single-cell

resolution. Comparing our clustering results with those on disso-

ciative scRNA-seqofbrain tissues,Pixel-seq showed less optimal

cell type separation.Amajor reason is that the feature resolution is

insufficient to delineate small cell projections densely intertwined

with brain cells. The reported highest feature resolution (0.22 mm;

Table S1) probably reaching the limit of current array fabrication is

still not enough for tracing axons and dendrites. Thus, alternative

strategies such as tissue expansion (Chen et al., 2015) might be

explored to push the resolution limit. In our data processing,

decreased accuracy of V-seg was often found for closely aggre-

gated cells, especially of small sizes. Better accuracy could be

achieved by machine learning-based algorithms (He et al., 2021;

Littman et al., 2021; Park et al., 2021; Petukhov et al., 2022) and

coupling the RNA data to cell boundary signals detected with flu-

orescently labeled or DNA-tagged affinity reagents. In this work,

polony gels were only used for capturing RNA, but they should

be applicable to protein detection with DNA-tagged antibodies

(Liu et al., 2020; Vickovic et al., 2022) andpossibly small-molecule

analytes via affinity reagent innovation (Kang et al., 2019). They

can also be designed with various probes for classical DNA

array-based applications (Bumgarner, 2013). Pixel-seq detected

subcellular transcript distributions in brain cells, which were not

further investigated in our study. Fully exploiting the 1-mm spatial

resolution requires improved data analysis and validation and

should be critical to revealing subcellular heterogeneity, such as

protein localization, interaction, and modification.
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