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Plastics have become indispensable in our modern life; world-
wide, approximately 390 million tonnes of polymers are 
produced annually1. The recent outbreak of the coronavirus 

pandemic has further stimulated the global demand for plastics 
because of the increased use of packaging materials and personal 
protective equipment2. The majority of plastic waste has been 
incinerated or has accumulated in landfill sites and the natural 
environment1, representing a severe loss of valuable resources (for 
example, an annual loss of 80–120 billion US dollars to the global 
economy)3,4. Furthermore, microplastics—defined as plastics 
smaller than 5 mm—are imposing serious ecological and environ-
mental threats1,5. Microplastics originate via the direct input from 
a variety of products (for example, cosmetic beads and clothing 
fibres) or the degradation of plastic debris in the ocean environ-
ment. The small size and dilution of microplastics hinders proper 
collection and reuse, making them ubiquitous in oceans and even 
drinking water6.

To address the issue of plastic waste, plastics recycling is desirable 
but its execution is challenging because of mediocre waste manage-
ment, deficiencies in recognition of the problem and the complex 
chemical makeup of plastics3,4. For example, approximately 50% of 
PET is not collected for recycling, although PET is the most copious 
polyester plastic with an annual production of around 38 million 
tonnes globally for textiles and packaging1. Only 7% of PET bottles 
are remoulded into bottles, but recycled PET is still hampered by 
the loss of mechanical properties during the recycling process7. 
Chemical upcycling has been considered as an alternative approach 
to convert non-recyclable plastic waste into valuable chemicals and 
materials3.

Here we report a solar-driven biocatalytic photoelectrochemical 
(BPEC) platform using non-recyclable real-world PET microplas-
tics as an electron feedstock to synthesize value-added compounds 
through the combination of photoelectrocatalysis and redox bio-
transformations, including oxyfunctionalization of C–H bonds, 

reductive amination of C=O bonds and trans-hydrogenation of 
C=C bonds. As illustrated in Fig. 1, the BPEC system comprises 
three components. First, a zirconium-doped haematite (Zr:α-Fe2O3) 
photoanode to extract electrons from hydrolysed PET solutions 
obtained from post-consumer commercial PET waste. Second, 
a carbon fibre paper (CFP) or anthraquinone-2-carboxylic acid-
anchored CFP (AQC/CFP) cathode to generate 1,4-dihydronicotin-
amide adenine dinucleotide (NADH) or H2O2, respectively. Third, a 
redox enzyme, such as NADH-dependent L-glutamate dehydroge-
nase (GDH), NADH-dependent ene-reductase from the old yellow 
enzyme (OYE) family, or H2O2-dependent unspecific peroxygenase 
(UPO), to drive the synthetic reactions. The Zr:α-Fe2O3 | CFP-based 
systems exhibit a broad applicability to other enzymatic substrates 
and show high total turnover numbers (TTNs) for the enzymes of 
362,000 (UPO), 144,000 (GDH) and 1,300 (OYE), which surpass 
those of state-of-the-art BPEC systems using water as an electron 
feedstock.

Results
Bioelectrocatalytic oxyfunctionalization. We tested a CFP elec-
trode for reductive activation of redox enzymes. The rationale of 
selecting electrically conductive CFP was its high chemical stability, 
large surface area and good mechanical strength8. The CFP elec-
trode showed randomly oriented microfibres with carbon-based 
functional groups (for example, conjugated C=C, C–C, C–OH and 
COOH). In-depth structural characterization via scanning electron 
microscopy (SEM), X-ray photoelectron spectroscopy and Raman 
spectroscopy are shown in Supplementary Fig. 1.

For the electrocatalytic production of H2O2, we prepared an 
AQC/CFP electrode using a solution immersion process (for details 
see Methods). The redox behaviour of AQC on the CFP was con-
firmed using cyclic voltammetry under reaction conditions repre-
sentative for peroxygenase reactions9 (potassium phosphate (KPi) 
buffer (100 mM, pH 6.0)). The AQC/CFP electrode exhibited a 
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redox wave with a formal potential of around 0.1 V versus the revers-
ible hydrogen electrode (RHE) under an argon-enriched environ-
ment, whereas the bare CFP did not show the characteristic redox 
peak (Fig. 2a). We attribute the wave to a typical two-electron–two-
proton reduction and oxidation10 of AQC/AQCH2. The surface 
concentration of AQC was estimated to be 18 nmol cm−2 from its 
cyclic voltammogram. On purging the electrolyte solution with O2, 
a cathodic current of AQC/CFP was much higher than that of CFP 
(Fig. 2a), indicating an important role of AQC in O2 reduction.

We confirmed that AQC promotes the reduction of O2 to H2O2. 
As shown in Fig. 2b, the rate of H2O2 production in the AQC/CFP 
system was 1.85 ± 0.07 mM h−1 at 0.16 VRHE. The rate decreased to 
0.90 ± 0.04 mM h−1 in the absence of AQC. These results highlight 
AQC-driven facilitation of the interfacial electron-transfer process; 
our electrochemical impedance spectroscopic analysis shows that 
the charge-transfer resistance of AQC/CFP is lower than that of CFP 
under O2-rich conditions (Supplementary Fig. 2 and Supplementary 
Table 1). Under anaerobic conditions, H2O2 formation was negli-
gible (<0.06 mM h−1; Supplementary Fig. 3). We further confirmed 
that the AQC/CFP-driven formation of H2O2 proceeds via a two-
step, single-electron reduction of O2 (Supplementary Fig. 4).

Having demonstrated in situ H2O2 production using the AQC/
CFP cathode, we advanced to coupling AQC/CFP-driven electroca-
talysis with peroxygenase-catalysed oxyfunctionalization reactions. 
We selected the recombinant, evolved peroxygenase from Agrocybe 
aegerita (rAaeUPO)11,12, which exhibits a high activity towards 
the oxidation of C–H bonds. Selective C–H oxyfunctionalization 
is a dream reaction in synthetic organic chemistry because of the 
kinetically inert nature of C–H bonds11,13. Peroxygenases are prom-
ising catalysts for such challenging oxyfunctionalization reactions 
because they combine a high catalytic activity with high selectivity 
while depending on simple H2O2 as the only oxidant. The applica-
tion of 0.16 VRHE to the AQC/CFP cathode drove the hydroxylation 
of ethylbenzene to enantiopure (R)-1-phenylethanol (e.e. > 99%) 
with a formation rate of 1.63 ± 0.08 mM h−1, corresponding to a 
turnover frequency (TOF) for rAaeUPO (that is, TOFrAaeUPO) of 
32,700 ± 1,500 h−1 (Fig. 2c). The bioelectrocatalytic reaction required 
active rAaeUPO, the substrate and an electrical bias (Fig. 2c).

Bioelectrocatalytic amination and hydrogenation. We examined 
the electrocatalytic capability of CFP to regenerate enzymatically 
active NADH from NAD+. [Cp*Rh(bpy)H2O]2+ (Mox; Cp* = C5Me5, 
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Fig. 1 | Schematic diagram of solar-powered photoelectrochemical biosynthetic reactions using non-recyclable real-world PET microplastics. CFP-based 
cathodes reduce O2 to H2O2 for biocatalytic oxyfunctionalization and NAD+ to NADH for enzymatic amination and asymmetric hydrogenation. For the 
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bpy = 2,2′-bipyridine) was used as an electron mediator14,15 to 
achieve the highly regioselective reduction of NAD+ into NADH. 
Linear sweep voltammograms show a cathodic current of Mox in 
an O2-depleted sodium phosphate (NaPi) buffer (100 mM, pH 7.5) 
(Fig. 2d). The addition of NAD+ further increased the cathodic cur-
rent, indicating the catalytic effect of Mred ([Cp*Rh(bpy)H]+) in the 
electron transfer from CFP to NAD+. However, the CFP cathode did 
not generate any cathodic current when using NAD+ without Mox 
(Supplementary Fig. 5), indicating the imperceptible direct reduc-
tion of NAD+. We further confirmed the CFP-driven conversion 

of NAD+ to NADH using Mox; the 1H NMR spectrum exhibited a 
characteristic peak at 6.94 ppm for NADH when we performed con-
trolled potential electrolysis at −0.2 VRHE (Fig. 2e and Supplementary 
Fig. 6). The rate of NADH production was 1.19 ± 0.07 mM h−1 at this 
electrical bias (Fig. 2f) but became negligible in the absence of Mox, 
NAD+ or electrical bias.

We applied the electrocatalytic regeneration system to activate 
GDH from bovine liver; GDH has been reported to receive electrons 
from NADH for the reductive amination reaction, which is a piv-
otal organic reaction16 for the synthesis of amines, pharmaceuticals,  
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agrochemicals and biomolecules. The redox enzyme converts 
α-ketoglutarate to L-glutamate17, which is a global food-flavour 
enhancer18, a crop-protection agent19 and a livestock nutrient20. 
As shown in Fig. 2g, L-glutamate was formed with a rate of 
2.74 ± 0.11 mM h−1 and a TOFGDH of 5,500 ± 200 h−1 at −0.2 VRHE; the 
rate of enzymatic reaction was higher than that of the NADH forma-
tion reaction (Fig. 2f), which has been observed in reports17,21,22 on 
GDH catalysis driven by NADH regeneration. We can attribute this 
to the faster regeneration of NADH caused by NADH-consuming 
GDH. The omission of Mox, NAD+ or GDH resulted in a negligible 
amount of L-glutamate (Fig. 2g), which indicates electron trans-
port from CFP to GDH through an NADH regeneration process. 
Thermal denaturation of the GDH did not result in the production 
of the product (Fig. 2g).

Furthermore, we revealed the general applicability of the NADH 
regeneration system by coupling it with OYE-driven asymmetric hydro-
genation reactions. In this experiment, we used an OYE from Thermus 
scotoductus (TsOYE) to catalyse the enantioselective trans-hydrogena-
tion of conjugated C=C bonds23,24. The 2001 Nobel Prize in Chemistry 
award accentuated the importance of catalysed enantioselective hydro-
genation reactions14,23. In addition, we replaced the NaPi buffer with a 
solution buffered using triethanolamine (TEOA)23 (100 mM, pH 7.5; 
see the rationale for this alteration in the Supplementary Methods); 
the rate of NADH formation remained constant regardless of the elec-
trolyte type (Supplementary Fig. 7). Controlled potential electrolysis 
at −0.2 VRHE resulted in enzymatic conversion of 2-methyl-2-cyclo-
hexen-1-one to (R)-2-methylcyclohexanone (e.e. > 99%) with a rate of 
1.16 ± 0.16 mM h−1 and a TOFTsOYE of 230 ± 30 h−1 (Fig. 2h). The rate of 
this enzymatic reaction was similar to that of the NADH regeneration 
reaction (Supplementary Fig. 7). However, the formation was rate sub-
stantially decreased when TsOYE was thermally denatured (Fig. 2h) 
and became imperceptible with the omission of TsOYE, Mox, NAD+ 
and the electrical bias.

Photoanodic electron extraction from microplastics. To provide 
electrons for the CFP-based cathodes, we chose α-Fe2O3 because 
of its abundance (Fe and O as the fourth and first most abundant 
elements in the Earth’s crust, respectively)25, its non-toxicity25 and 
its excellent photoelectrochemical (PEC) stability under alkaline 
conditions (pH 13.6)25 compared with visible-light-absorbing metal 
oxide semiconductors (for example, BiVO4 (unstable at pH > 11)26 
and WO3 (unstable at pH > 4)27). We synthesized an α-Fe2O3 photo-
electrode by first hydrothermally depositing akaganeite (β-FeOOH) 
on a fluorine-doped tin oxide glass and then thermally convert-
ing β-FeOOH into worm-like α-Fe2O3 (90 ± 12 nm in diameter, 
312 ± 91 nm in length; Fig. 3a,b). Characterization details using 
SEM, X-ray photoelectron spectroscopy and X-ray diffraction are 
shown in Fig. 3a,b and Supplementary Fig. 8. We investigated this 
photoelectrode’s optical and electronic properties because these pho-
tophysical properties determine the PEC efficiencies. According to 
our ultraviolet-visible spectroscopy analysis, the α-Fe2O3 absorbed 
UV and visible light below approximately 580 nm with a bandgap 
of 2.00 eV (Supplementary Fig. 8f,g). From the UV photoelectron 
spectrum and bandgap of α-Fe2O3, its valence-band-edge potential 
and conduction-band-edge potential were estimated to be 2.52 and 
0.52 VRHE, respectively (Supplementary Fig. 8g,h).

We investigated the PEC performance of α-Fe2O3 on electron 
extraction from PET microplastics under different conditions at 
303 K: (1) with no bias in the dark, (2) with an anodic bias (1.0 VRHE) 
in the dark, (3) with no bias under solar light (using an air mass 
1.5 global (AM 1.5 G) solar spectrum; 100 mW cm−2) and (4) with 
the anodic bias under solar light. Note that the PEC experiments 
began immediately as soon as we prepared an unpretreated PET 
solution (1 mg ml−1) by adding PET microplastics (size ≤ ~5 mm) 
to an aqueous 5 M NaOH electrolyte solution (see Methods for 
details). Quantitative 1H NMR spectroscopy of the PET shows the  

solubilization of PET to ethylene glycol (EG) and benzene-1,4-di-
carboxylate (BD) under conditions (1), (2) and (3) (Supplementary 
Fig. 9), which we attribute to the alkaline hydrolysis of the ester 
functional groups of PET. By stark contrast, the positive group—
condition (4)—resulted in the formation of 530 ± 23 nmol formate 
and 185 ± 9 nmol acetate (Supplementary Fig. 9a). These results sig-
nify that the α-Fe2O3 photoanode extracts electrons and produces 
organic fuels from solubilized non-recyclable microplastics.

Mechanistic investigation. We performed mechanistic analyses to 
examine the underlying photoredox chemistry driven by α-Fe2O3. 
For the analyses, we constructed a two-compartment, three-elec-
trode configuration using a salt bridge, which maintains electrical 
neutrality within the internal circuit. We confirmed that PET ref-
ormation occurs through the photo-oxidative pathway; as shown in 
Supplementary Fig. 10a, we detected formate and acetate at the anodic 
site but not at the cathodic site. Because the photoanode generated 
photoexcited holes, O2, H2O2 and HO• (Supplementary Fig. 10b),  
we investigated which species drove the waste-to-chemical con-
version. As shown in Fig. 3c, the addition of sodium sulfite (hole 
scavenger) suppressed the reaction, whereas the presence of sodium 
pyruvate28 (H2O2 scavenger) or tert-butyl alcohol (HO• radical scav-
enger) as well as purging with N2 gas did not restrain the formation 
of formate and acetate. Note that H2O2 and O2 themselves do not 
bring about the target reaction under dark conditions without an 
electrical bias (Supplementary Fig. 10c). These results indicate that 
a photoexcited hole is responsible for the photo-oxidative reaction.

Because the alkaline solubilization of PET microplastics resulted 
in the formation of EG and BD (Supplementary Fig. 9b), we inves-
tigated which molecules reacted with the photoexcited holes from 
α-Fe2O3. 1H and 13C NMR spectroscopic analyses show that pho-
toelectroactivated α-Fe2O3 oxidizes EG to a variety of products 
(Supplementary Fig. 11a,b). The oxidation products included C2 
intermediates (for example, glyoxal, glycolate and glyoxylate) and 
C1 molecules (such as formate and acetate). These oxidation inter-
mediates have been reported29,30 to be formed through the oxidation 
reaction of EG, and further oxidized to formate and acetate under 
alkaline conditions. The photoactivated α-Fe2O3 oxidized the C2 
intermediates to formate and acetate (Supplementary Fig. 11c–e).  
However, α-Fe2O3 did not oxidize BD during the PEC reaction 
(Supplementary Fig. 11f), which we attribute to the difficulty of 
oxidizing stable aromatic moieties.

We observed the dependency of the PEC oxidation rates on the 
applied bias and PET concentration. In the kinetic experiments, 
we prepared a pretreated PET solution (5 mg ml−1; see Methods for 
details) as an electrolyte solution; this pretreatment step solubilizes 
the solid wastes in advance, which facilitates contact between the 
photoelectrocatalyst and the substrate. Linear sweep voltammet-
ric analysis shows that the anodic current of α-Fe2O3 increases 
with increasing applied bias and PET concentration under light 
conditions, but the current is negligible under dark conditions 
(Supplementary Fig. 12a,b). Consistent with these results, the 
production rate of formate and acetate increased with increasing 
applied bias from 0.7 to 1.2 VRHE and PET concentration from 0 to 
10 mg ml−1 (Supplementary Fig. 12c,d).

Haematite doping for enhanced photoanodic reactions. The 
separation of photoexcited charge carriers plays a decisive role in 
the efficiency of PEC reactions because it increases the concentra-
tion of charge carriers that participate in a photoredox reaction. We 
hypothesized that a doping treatment of α-Fe2O3 should boost the 
efficiency of the waste-to-chemical reaction because this strategy 
will increase the electron concentration, to enhance the electrical 
conductivity and suppress charge recombination, as well as making 
the α-Fe2O3 band bending upward more to provide a strong driving 
force for charge separation31,32. Thus, we introduced Zr4+ atoms into 
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the α-Fe2O3 nanostructure to synthesize a Zr:α-Fe2O3 photoanode 
since the Zr dopants have been reported to provide electrons for 
α-Fe2O3 and, in terms of a small polaron model as a conduction 
mechanism,33 accelerate electron transport between Fe atoms, which 
are both beneficial for increasing carrier conductivity. Doping with 
Zr scarcely altered the phase, morphology, optical bandgap and 
band-edge potentials of the photoanode (Supplementary Fig. 13).

We observed the enhanced PEC performance of the Zr:α-Fe2O3 
photoanode. The photoanodic current of Zr:α-Fe2O3 increased con-
siderably and the onset potential of water oxidation was cathodically 
shifted by 0.18 V when we used 2 mM Zr4+ ions in the precursor 
solution (Supplementary Fig. 14). We attribute the improved per-
formance to an increased electron concentration (Supplementary 
Fig. 15a), enhanced charge-separation dynamics (Supplementary 
Fig. 15b), decreased charge-transfer resistance at the Zr:α-Fe2O3 
interface (Supplementary Fig. 15c,d), suppressed charge recombi-
nation (Supplementary Fig. 16) and more upward band bending 
(Supplementary Fig. 15a), which we obtained using (transient) 
voltammetric analysis, Mott–Schottky analysis and electrochemical 
impedance spectroscopy. Detailed analytical results are shown in 
Supplementary Figs. 15 and 16.

These photophysical improvements caused by Zr doping 
resulted in faster PET reformation. Figure 3d shows that Zr:α-Fe2O3 
exhibits a faster production of formate and acetate than the α-Fe2O3 

photoanode from 0.8 to 1.2 VRHE. Consistent with these results, 
the Zr:α-Fe2O3 photoanode generated a higher photoanodic 
current than did α-Fe2O3 under the same PET concentrations  
(Fig. 3e), which is beneficial for faster electron transport to CFP-
based cathodes for rapid biocatalytic reactions. Furthermore, the 
Zr:α-Fe2O3 electrode exhibited negligible PEC decomposition of 
formate and acetate from 0.8 to 1.2 VRHE (Supplementary Fig. 17 and 
Supplementary Table 2).

We confirmed the robust PEC stability of Zr:α-Fe2O3. As shown 
in Supplementary Fig. 18, Zr:α-Fe2O3 exhibited a steady formation 
rate of formate and acetate during a seven-iteration experiment (a 
12 h reaction per cycle). In addition, the phase and surface chemi-
cal states of Zr:α-Fe2O3 did not alter (Supplementary Fig. 19 and 
Supplementary Table 3) and its constituent atoms did not leak into 
the electrolyte solution after the reusability test (Supplementary 
Table 4). These results indicate the suitability of Zr:α-Fe2O3 for 
long-term PEC reactions.

Furthermore, we revealed the real-world applicability of the 
Zr:α-Fe2O3 energy material using microplastics from post-consumer 
PET waste, including a PET disposable cup and a PET bottle. The 
application of solar energy (1 sun) and electrical bias (1.1 VRHE) to 
the photoanode triggered the formation of approximately 1.7 mmol 
formate and 40 μmol acetate from an unprehydrolysed PET cup and 
a PET bottle for 10 days (Supplementary Fig. 20).
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Photobiosynthesis fuelled by post-consumer microplastics. 
Having substantiated CFP-mediated biosynthetic reactions and 
Zr:α-Fe2O3-driven transformation reactions, we integrated these 
two redox reactions in a two-compartment, two-electrode configu-
ration (working electrode, Zr:α-Fe2O3 photoanode; counter elec-
trode, AQC/CFP or CFP cathode). We prepared a pretreated PET 
solution—using microplastics from a post-consumer PET dispos-
able cup—as an anodic electrolyte solution. Controlled potential 

photoelectrolysis triggered biocatalytic synthesis, including the 
rAaeUPO-driven formation of enantiopure (R)-1-phenylethanol, 
the GDH-driven production of L-glutamate and the TsOYE-
catalysed generation of enantiopure (R)-2-methylcyclohexanone 
(Fig. 4 and Supplementary Figs. 21 and 22). The enantioselectivities 
remained constant (e.e. > 99%) regardless of the size of the applied 
bias (Fig. 4a,c). Shielding the PEC system from solar light made the 
synthetic reactions sluggish or imperceptible (Fig. 4), signifying that 
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solar energy is a key energy resource for driving the redox reactions 
at a meaningful rate. We also revealed that the rates of the photo-
biosynthetic reactions increased with the PET concentration from 
0 to 50 mg ml−1 (Supplementary Fig. 23), which indicates that PET 
provides electron donors (for example, EG) for boosting enzymatic 
transformation reactions.

Using the optimized applied bias of each enzymatic reaction, 
our photobiocatalytic system exhibited a TTNrAaeUPO of 113,000 
(3 h), a TTNGDH of 144,000 (56 h) and a TTNTsOYE of 1,300 (7 h) 
(Fig. 5 and Supplementary Fig. 24a). The reaction times of GDH 
and TsOYE were longer than those reported in previous research 
on BPEC systems17,34–36, which we attribute to the robustness of the 
Zr:α-Fe2O3 | CFP system and the biocatalysts. However, the rAae-
UPO reaction halted at around 2 h (Supplementary Fig. 24a), which 
was shorter than that recorded in a previous BPEC study37. We found 
that the CFP cathode formed HO• radicals (Supplementary Fig. 24b), 
which have been reported37,38 to be capable of deactivating the enzyme. 
Because electrochemical reduction of H2O2 forms HO• radicals39, 
we decreased the applied bias from 1.2 to 0.9 VRHE, which resulted 
in negligible formation of the radicals (Supplementary Fig. 24b).  

This strategy resulted in a steady biosynthetic reaction with a 
TTNrAaeUPO of 271,000 (7 h) (Fig. 5 and Supplementary Fig. 24a). 
Zr:α-Fe2O3 produced formate and acetate during the PEC reactions 
(Supplementary Table 5), which indicates the production of value-
added compounds simultaneously at the anodic and cathodic sites.

We demonstrated the broad applicability of the photobiosynthetic 
platform by extending the substrate scope (Supplementary Table 6). 
Figure 5 and Supplementary Fig. 22 display the rAaeUPO-mediated 
synthesis of (R)-1,2,3,4-tetrahydro-1-naphthol (e.e. > 99%, TOF = 
48,000 h−1, TTN = 312,000), cyclohexanol (TOF = 36,000 h−1, TTN 
= 234,000) and (1R,2S)-1-phenylpropylene oxide (e.e. > 99%, TOF 
= 64,000 h−1, TTN = 362,000), as well as the TsOYE-driven produc-
tion of cyclohexanone (TOF = 420 h−1, TTN = 1,300) and 3-phenyl-
propionaldehyde (TOF = 140 h−1, TTN = 690).

Discussion
Inspired by natural photosynthesis, BPEC platforms synthesize 
value-added compounds through the cooperation of photoelec-
trocatalysis with redox biotransformations40–42. Mechanistically, a 
photoelectrode absorbs solar energy and transfers its photoexcited 
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Fig. 5 | Substrate scope of BPEC reactions using real-world PET microplastics. Cathodic electrolyte for rAaeUPO reactions, including the enantioselective 
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charge carriers to the catalytic centre of redox enzymes, which 
subsequently catalyse synthetically useful redox reactions (for 
example, asymmetric hydrogenation of C=C bonds, amination of 
C=O bonds, hydroxylation of C–H bonds and epoxidation of C–H 
bonds)14. Traditional PEC cells are classified into regenerative and 
photosynthetic cells, in which semiconducting electrodes directly 
convert sunlight into, respectively, electric power or chemical fuels 
(for example, H2)43. By contrast, BPEC approaches develop new 
concepts14,44 for solar-energy conversion using solid-state cata-
lytic electrodes as solar-powered activators of oxidoreductases45 
(Supplementary Table 7); the biocatalytic components perform 
organic synthetic reactions that (semi)conductors generally cannot 
perform with excellent chemo-, regio- and stereoselectivities, high 
catalytic efficiencies and environmental benignity.

The BPEC system has emerged as an alternative platform to the 
biocatalytic photocatalytic (BPC) system. These two approaches 
harvest clean and abundant solar energy to generate photoexcited 
charge carriers for driving enzymatic reactions (Supplementary 
Table 8). BPC systems, using molecular46–48 or semiconducting 
photocatalysts49,50, can have the advantage that catalytic reactions 
take place throughout the reaction medium without mass-transfer 
limitations. However, compared with BPEC approaches, many BPC 
systems suffer from the recombination14,45 of photoexcited charge 
carriers and cannot use the merits that originate from the separation 
of oxidation and reduction sites (such as the preservation of redox 
enzymes from reactive oxidized electron donors45). In contrast to 
these light-driven routes, bioelectrocatalytic systems use electrical 
energy and conducting electrodes51,52 to activate redox enzymes. 
Compared with BPC approaches, bioelectrocatalytic platforms have 
the benefit of controlling the Fermi level14 of the catalytic electrode 
and driving the redox reaction selectively; however, bioelectrocata-
lytic approaches suffer from mass-transport limitations52,53 because 
catalytic reactions occur at the electrode/electrolyte interface. 
Bioelectrocatalytic and BPEC systems share the common advan-
tages of isolating the anodic from the cathodic sites in a two-com-
partment configuration. However, bioelectrocatalytic approaches 
demand a larger electrical bias than BPEC platforms because the 
latter harness solar energy to generate excited electronic potentials.

The majority of BPEC systems17,35,37,40,41 have focused on water 
oxidation to provide the reducing equivalents needed to drive 
reductive enzymatic reactions. However, water oxidation poses 
substantial limitations, such as its sluggish reaction rate caused by 
anodic four-electron (or two-electron) process23 and the relatively 

low value of dioxygen54. This issue made us hypothesize that find-
ing another electron feedstock would accelerate enzymatic synthetic 
reactions and produce value-added chemicals simultaneously on 
oxidation and reduction sites.

The current work demonstrates that real-world microplastics 
can provide electron feedstocks to expedite photobiosynthetic reac-
tions with excellent TTNs. The two-compartment BPEC system 
provides several distinct advantages that are impossible in BPC 
processes (Supplementary Fig. 25). First, the protection of reduced 
mediators (such as Mred and NADH) and enzymes from photo-
oxidation. Second, the flexible combination of redox reactions (for 
example, EG oxidation with H2O2 production and NADH regenera-
tion) with different reaction conditions (such as KPi buffer (pH 6.0) 
with NaOH alkaline solution). Third, control of the applied bias to 
drive redox reactions selectively (for example, H2O2 production and 
suppressed HO• generation). Fourth, the spatial separation of enzy-
matic products (such as (R)-1-phenylethanol, L-glutamate and (R)-
2-methylcyclohexanone) and oxidation products (such as formate 
and acetate). Fifth, the development of individual (photo)electrodes 
(for example, Zr:α-Fe2O3 and AQC/CFP). Sixth, the facile reusabil-
ity of catalytic electrodes.

Our BPEC platform compares favourably with state-of-the-art 
BPEC systems in a two-electrode configuration (Fig. 6). The reported 
PEC cells17,35–37 extracted electrons from water to trigger redox bio-
transformations driven by rAaeUPO (TTNrAaeUPO ≤ 43,000)36,37, 
GDH (TTNGDH = 108,000)17 or TsOYE (TTNTsOYE ≤ 250)35,36. Our 
PEC system acquired electrons from hydrolysed PET solutions and 
accelerated enzymatic synthetic reactions with the highest TTNenzyme 
values (TTNrAaeUPO = 362,000, TTNGDH = 144,000, TTNTsOYE = 1,300) 
among solar-driven BPEC systems (Supplementary Table 9). 
Furthermore, the Zr:α-Fe2O3 photoanode exhibits a higher produc-
tion rate of formate (μmol per cm2 anode per h per g PET) than the 
reported catalytic anode55 (Supplementary Table 10). This perfor-
mance could be the result of the poor decomposition of formate 
and acetate driven by the Zr:α-Fe2O3 photoanode. We suspect that 
formate and acetate may undergo poor adsorption and oxidation 
at the surface of Zr:α-Fe2O3, as reported in the literature56,57, for the 
α-Fe2O3-driven PEC oxidation of organic molecules.

Follow-up studies are needed to improve the photoanodic per-
formance of electron extraction through, for example, the dem-
onstration of detailed PEC mechanisms of PET reformation by 
Zr:α-Fe2O3, modification of the surface morphology to decrease 
charge recombination, and construction of junctions to improve 
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charge separation. In addition, functionalization of cathodes with 
additional catalysts would accelerate enzymatic reactions by boost-
ing interfacial charge transfer to enzyme activators. These studies 
will further expand the scope of our approach to other redox enzy-
matic reactions (for example, hydrogenase-driven evolution of H2 
as well as Baeyer–Villiger monooxygenase-mediated formation of 
esters and lactones) with improved efficiencies.

This study reports a solar-assisted e-biorefinery approach that 
uses PET microplastics as an electron feedstock for redox biosyn-
thesis. The Zr:α-Fe2O3 | AQC/CFP and Zr:α-Fe2O3 | CFP hybrids 
produced value-added chemicals at the anodic and cathodic sites 
through simultaneous enzymatic synthetic reactions (rAaeUPO-
driven hydroxylation/epoxidation, GDH-mediated amination and 
TsOYE-catalysed hydrogenation) as well as EG oxidation. The 
photoanodic half-reaction by α-Fe2O3 led to delivery of electrons 
to the CFP-based cathode and the generation of valuable chemicals 
(for example, formate and acetate). To accelerate the photoanodic 
extraction of electrons, we synthesized the Zr:α-Fe2O3 photoanode 
that exhibited improved charge-separation efficiencies (Δηbulk of 
3.5–10%, Δηsurface of 15–60%), a decreased charge-transfer resistance 
(by up to 17 times), a cathodic shift of the flat-band potential by 
0.16 V and reduced charge-recombination behaviour. Furthermore, 
the Zr:α-Fe2O3 photoanode reformed real-world PET items for over 
ten days. This microplastic-fuelled PEC biocatalysis showed a broad 
applicability to various enzymatic substrates and achieved bench-
mark performances (TTNrAaeUPO = 362,000, TTNGDH = 144,000 and 
TTNTsOYE = 1,300).

Methods
Characterization of CFP. We bought a commercial CFP from HanTech. Before 
performing any experiments, we washed the CFP using deionized water, ethanol 
and acetone, and then dried it under vacuum at room temperature. We used an 
ultrahigh-resolution scanning electron microscope SU8230 (Hitachi High-Tech) 
to observe the morphology of the CFP. We used a K-Alpha X-ray photoelectron 
spectrometer (ThermoFisher Scientific) to investigate chemical states of the CFP. 
We obtained the Raman spectrum of CFP using a LabRAM HR Evolution Raman 
microscope (Horiba) with an excitation wavelength of 514 nm.

Preparation of AQC/CFP cathode. We purified commercial CFP as mentioned 
above. To prepare AQC/CFP, we immersed the CFP in an ethanolic solution 
containing 3 mM AQC for 24 h. Subsequently, we dried it at room temperature in 
air. We estimated the amount of surface-bound AQC using cyclic voltammetric 
analysis; the surface concentration of AQC (ΓAQC) was estimated using equation (1)

ΓAQC
(

nmol cm−2
)

= Q × (n × F × A)−1 (1)

where Q is the charge consumed for the reduction of AQC, which was calculated 
from a cyclic voltammogram of AQC/CFP, n is the number of electrons transferred 
to AQC (n = 2), F is the Faraday constant (96,485 C mol−1), and A is the geometrical 
surface area of the CFP. We obtained Nyquist plots of the CFP and AQC/CFP 
electrodes using a ZIVE SP1 impedance analyser (WonATech) at an alternating-
current potential amplitude of 10 mV. We fitted the Nyquist plots to calculate their 
charge-transfer resistance values using ZMAN software (WonATech).

Electrocatalytic production of H2O2. Electrocatalytic production of H2O2 was 
performed using a three-electrode configuration (reference electrode: Ag/AgCl 
(3 M NaCl)). The electrolyte solution was a KPi buffer (100 mM, pH 6.0). When 
we applied an electrical bias to this system, we used a WMPG 1000 potentiostat/
galvanostat (WonATech). When we investigated the pathway of the electrochemical 
production of H2O2, we added 10 mM 1,4-benzoquinone (O2

•− scavenger)  
to the electrolyte solution. All potentials are quoted versus the RHE according to 
equation (2).

ERHE (V) = EAg/AgCl (V) + 0.209 + (0.059 × pH) (2)

After the electrochemical reaction, we collected the reaction solution and 
mixed it with a colorimetric reagent solution (3.0 U horseradish peroxidase and 
2 mM 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) in a KPi solution 
(100 mM, pH 5.0)). We monitored its absorbance at 420 nm using a V-650 
UV-visible absorption spectrophotometer (JASCO).

Bioelectrocatalytic oxyfunctionalization reactions. We applied AQC/CFP-driven 
H2O2 production to rAaeUPO-mediated oxyfunctionalization reactions using a 

one-compartment, three-electrode configuration. The reference electrode was Ag/
AgCl (3 M NaCl). The electrolyte solution was an O2-rich KPi buffer (100 mM, 
pH 6.0) that contained rAaeUPO and ethylbenzene. After the bioelectrocatalytic 
reaction, we extracted the oxyfunctionalized products using ethyl acetate, dried 
them over MgSO4, and quantified them using a 7890A gas chromatograph (Agilent 
Technologies) equipped with a flame ionization detector and a CP-Chirasil-Dex 
CB column (25 m × 0.32 mm × 0.25 μm).

Electrocatalytic regeneration of NADH. To investigate the capability of CFP for 
reducing NAD+ to NADH, we immersed a CFP electrode in NaPi buffer (100 mM, 
pH 7.5) containing NAD+ and Mox using a three-electrode configuration. We used 
the WMPG 1000 potentiostat/galvanostat to perform electrocatalytic analysis 
and controlled potential electrolysis. We quantified NADH using the V-650 UV-
visible absorption spectrophotometer. NMR analysis was performed to confirm 
the formation of NADH. We used a 400 MHz AVANCE III HD NanoBay (Bruker) 
spectrometer equipped with a 5 mm multinuclear broadband fluorine observe (or 
BBFO) probe.

Bioelectrocatalytic amination and hydrogenation. To carry out enzymatic 
amination reactions, we dissolved GDH, α-ketoglutarate, NH4

+, Mox and NAD+ in 
O2-depleted NaPi buffer (100 mM, pH 7.5). The concentrations of α-ketoglutarate 
and L-glutamate were measured using HPLC (1260 Infinity LC System, Agilent 
Technologies) equipped with a variable-wavelength detector and an Intersil C18 
column. To drive the enzymatic hydrogenation reactions, we added TsOYE, 
2-methyl-2-cyclohexen-1-one, CaCl2, NH4

+, Mox and NAD+ to O2-depleted TEOA-
buffered solution (100 mM, pH 7.5). The products of TsOYE were quantified using 
the 7890A gas chromatograph equipped with a flame ionization detector and a CP-
Chirasil-Dex CB column (25 m × 0.32 mm × 0.25 μm).

Fabrication of photoanodes. We synthesized a haematite photoanode via solution-
based processing and high-temperature annealing. A commercial fluorine-doped 
tin oxide glass (F:SnO2; TEC-7, Pilkington) was rinsed with acetone, isopropyl 
alcohol and deionized water. To deposit a β-FeOOH nanostructure on the F:SnO2 
substrate, we prepared a precursor solution containing 150 mM FeCl3·6H2O and 
1 M NaNO3 in deionized water. The substrate was immersed in the solution and 
heated using a Lindberg/Blue M muffle furnace (Fisher Scientific) at 100 °C. To 
transform β-FeOOH into α-Fe2O3, the electrode was annealed at 800 °C. When we 
prepared the Zr:α-Fe2O3, we added ZrCl4 to the precursor solution and followed 
the above-mentioned method.

Preparation of PET-containing electrolyte solutions. Granular PET polymer 
(Sigma-Aldrich) and commercial PET items were ground to microplastics 
(size ≤ ~5 mm) using a commercial coffee grinder. After we had prepared an 
electrolyte solution by adding the microplastics to 5 M NaOH solution, we 
immediately conducted the photoelectrocatalytic reactions unless otherwise 
specified. We designated the solution as ‘unpretreated PET solution’, and its 
concentration details are given in the main text and figures. To prepare a ‘pretreated 
PET solution’, we immersed the microplastics in 5 M NaOH solution at 353 K 
under dark conditions with stirring at 700 revolutions per minute unless otherwise 
specified; the amount of microplastic is mentioned in the main text and figures.

Photoelectrochemical reformation of PET. We performed controlled potential 
photoelectrolysis to drive the PEC reformation of PET. The light source was a 
xenon arc lamp (Newport Corporation), and the electrical bias was provided using 
the WMPG 1000 potentiostat/galvanostat. All potentials are quoted versus the RHE 
according to equation (3).

ERHE (V) = EHg/HgO (V) + 0.140 + (0.059 × pH) (3)

To investigate which species (for example, holes, H2O2 or HO•) performed the 
waste-to-chemical conversion, we separated the photoanodic and cathodic sites 
and added sodium sulfite (hole scavenger), sodium pyruvate (H2O2 scavenger) or 
tert-butyl alcohol (HO• scavenger) to an unpretreated PET solution (1 mg ml−1 
PET microplastics, 5 M NaOH). To test the effect of O2 on the PET reformation 
reaction, we purged N2 gas into the anodic electrolyte solution before and during 
the PEC reactions.

Quantitative NMR spectroscopy. 1H NMR spectra were recorded using the 
400 MHz AVANCE III HD NanoBay spectrometer equipped with a 5 mm 
multinuclear BBFO probe. We prepared NMR samples (700 μl) by diluting the 
reaction sample in D2O solvent (v/v, 9:1) that contained maleic acid (quantification 
standard) and sodium trimethylsilylpropanesulfonate (chemical shift standard); 
D2O was used to provide an internal lock signal to correct drift in the magnetic 
field during the measurements. The NMR pulse sequence, relaxation delay and 
temperature were zgesfpgp, 6 s and 298 K, respectively. The molar concentration of 
the analyte (Canalyte) in the sample was calculated according to equation (4)

Canalyte =
Ianalyte × Nstandard

Istandard × Nanalyte
× Cstandard (4)
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where Ianalyte is the integral of the analyte peak, Istandard is the integral of the standard 
peak, Nanalyte is the number of protons corresponding to the analyte peak and Nstandard 
is the number of protons corresponding to the standard peak.

Photoelectrochemical biocatalysis. We connected a Zr:α-Fe2O3 photoanode 
and a CFP (or AQC/CFP) cathode using a two-compartment configuration. 
We performed controlled potential photoelectrolysis using the xenon lamp and 
WMPG 1000 potentiostat/galvanostat; the experimental design was for solar light 
to be irradiated onto the anodic site, not the cathodic site. The geometrical surface 
area of the photoanode and the cathode was 1.7 and 1 cm2, respectively, unless 
otherwise specified. The anodic electrolyte was a 5 M NaOH aqueous solution 
containing prehydrolysed PET microplastics; we prepared the microplastics 
by grinding post-consumer PET cups. The cathodic electrolyte was different 
according to the type of enzyme: for example, O2-enriched KPi buffer (100 mM, 
pH 6.0) containing rAaeUPO and substrate for the oxyfunctionalization reactions, 
O2-depleted NaPi buffer (100 mM, pH 7.5) containing GDH, α-ketoglutarate, 
NH4

+, Mox and NAD+ for the amination reactions, and O2-depleted TEOA buffer 
(100 mM, pH 7.5) containing TsOYE, substrate, Ca2+, NH4

+, Mox and NAD+ for 
the hydrogenation reactions. Gas chromatographic analysis was used to quantify 
the enzymatic products. We calculated the TTNs of rAaeUPO, GDH and TsOYE 
according to, respectively, equations (5), (6) and (7).

TTNrAaeUPO =
Maximumproduct concentration during enzymatic reaction

Concentration of rAaeUPO (5)

TTNGDH =
Maximumproduct concentration during enzymatic reaction

Concentration of GDH (6)

TTNTsOYE =
Maximumproduct concentration during enzymatic reaction

Concentration of TsOYE (7)

Data availability
The data supporting the findings of the study are available in the paper and its 
Supplementary Information. Source data are provided with this paper.
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