Supplementary information

Enabling ultra-low-voltage switching in BaTiO₃

In the format provided by the authors and unedited

Supplementary Information

Enabling ultralow voltage switching in BaTiO₃

Y. Jiang^{1,2}, E. Parsonnet³, A. Qualls³, W. Zhao¹, S. Susarla⁴, D. Pesquera^{1,5}, A. Dasgupta¹, M. Acharya^{1,2}, H. Zhang¹, T. Gosavi⁶, C.-C. Lin⁶, D. E. Nikonov⁶, H. Li⁶, I. A. Young⁶, R. Ramesh^{1,2,3}, and L. W. Martin^{1,2,*}

- ¹ Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- ² Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- ³ Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
- ⁴ National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- ⁵ Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ⁶ Components Research, Intel Corporation, Hillsboro, OR 97124, USA
- * lwmartin@berkeley.edu

Table of Contents

- Supplementary Notes 1-2
- Supplementary Figures 1-14
- Supplementary References

Supplementary Notes

I. Literature Review on Electrical and Structural Properties of Ferroelectric Thin Films

An extensive literature review was made for BaTiO₃ films synthesized in the past 50 years with various techniques, including sputtering¹⁻⁸, molecular-beam epitaxy⁹⁻¹³, pulsed-laser deposition¹³⁻⁴⁰, activated reactive evaporation⁴¹⁻⁴³, sol-gel process⁴⁴, hydrothermal reaction⁴⁵ and polymer precursor method⁴⁶. The following describes the different summary figures as noted and how they were produced:

Figure 1a. This plot shows a summary of remanent polarization vs. coercive voltage. For any polarization-electric field (voltage) loop reported in previous studies, the coercive field (voltage), $E_C(V_C)$ was extracted via taking average of the absolute values of positive E_C^+ (V_C^+) and negative E_C^- (V_C^-) [*i.e.*, $E_C = (|E_C^+|+|E_C^-|)/2$, $V_C = (|V_C^+|+|V_C^-|)/2$)] while the remanent polarization was extracted via taking average of the absolute values of positive P_r^+ and negative P_r^- [*i.e.*, $P_r = (|P_r^+|+|P_r^-|)/2$] after the correction of the loop for any horizontal bias, $(E_C^++E_C^-)/2$ or ($V_C^++V_C^-)/2$. The ferroelectric properties of a BaTiO₃ single crystal¹³ are also shown.

Figure 1c. This plot shows a summary plot of the out-of-plane lattice expansion vs. coercive field. The out-of-plane lattice expansion was calculated using $\Delta l/l \times 100\%$ where *l* is the theoretical out-of-plane lattice parameter, $l_{theoretical}$ (*i.e.*, $l = l_{theoretical}$), while Δl is the difference between the measured out-of-plane lattice parameter, $l_{measured}$, and the theoretical out-of-plane lattice parameter (*i.e.*, $\Delta l = l_{measured} - l_{theoretical}$). For an epitaxially strained BaTiO₃ film on any substrate, $l_{measured}$ is directly obtained from θ - 2θ X-ray diffraction scans. $l_{theoretical}$ is calculated from bulk BaTiO₃ lattice parameters¹³ (*i.e.*, $a_{bulk} = 3.992$ Å, $c_{bulk} = 4.036$ Å), substrate lattice parameter⁴⁷ and a BaTiO₃ Poisson's ratio of 0.35^{48} , under the condition of a biaxial stress state. For a relaxed BaTiO₃ film with (001) orientation, $l_{measured}$ is directly obtained from θ - 2θ X-ray diffraction scans.

 $l_{theoretical}$ takes the value of the *c*-axis lattice parameter in bulk BaTiO₃ (*i.e.*, $l_{theoretical} = c_{bulk}$). For a polycrystalline or highly-textured BaTiO₃ film with different grain orientations, $l_{measured}$ takes the value of measured pseudocubic cell parameter, $a_{pc,measured}$, calculated from the measured lattice parameters of a tetragonal unit cell⁴⁹ (*i.e.*, $l_{measured} = a_{pc,measured} = \sqrt[3]{a_{measured}^2 \times c_{measured}}$), while $l_{theoretical}$ takes the value of theoretical pseudocubic cell parameter, $a_{pc,theoretical} = \sqrt[3]{a_{measured}^2 \times c_{measured}}$), while $l_{theoretical}$ takes the value of theoretical pseudocubic cell parameter, $a_{pc,theoretical}$, calculated from bulk BaTiO₃ lattice parameters (*i.e.*, $l_{theoretical} = a_{pc,theoretical} = \sqrt[3]{a_{bulk}^2 \times c_{bulk}} = 4.006$ Å).

Figure 2f. This plot summarizes the energy of switching *vs.* coercive voltage. The energy of switching is calculated from the area enclosed by the saturated polarization-electric field hysteresis loop. Data for $PbZr_xTi_{1-x}O_3$ thin films⁵⁰⁻⁵⁵ are also shown as comparisons.

II. Coercive Field in BaTiO₃ Thin Films Grown on SrTiO₃/Si Substrates

Here, we rationalize why the coercive field remains relatively small in BaTiO₃ films grown on SrTiO₃/Si (001) substrate. The relaxed, bulk-like portions in these BaTiO₃ films (specifically the *c* domains, which are the domains oriented in the direction of the device) would, intrinsically, have a lower coercive field¹³ (*e.g.*, the coercive field for single crystal BaTiO₃ is \sim 1 kV cm⁻¹) as their strain is relaxed. However, the formation of these relaxed phases are often accompanied by dislocation formation⁵⁶, therefore they also contain a certain amount of defects which can increase the coercive field. Moreover, some portion of the films remains strained (thus likely exhibiting a large coercive field^{13,57}). This combination, in turn, manifests as having a similar, but slightly larger coercive field (\sim 16.5 kV cm⁻¹) than the coherently strained films (\sim 16.0 kV cm⁻¹) which is still advantageous.

Supplementary Figures

I. Structural Characterization of BaTiO₃ Thin Films Grown at Different Pressures

Reciprocal space mapping (RSM) studies of heterostructures of the form 30 nm SrRuO₃/100 nm BaTiO₃/30 nm SrRuO₃/GdScO₃ (110) were completed using X-ray diffraction. The BaTiO₃ layer was grown at varying pressures (as noted in the main text): 20 mTorr, 40 mTorr, 60 mTorr, and 70 mTorr and RSMs are shown for the heterostructures at each condition (Supplementary Fig. 1a-d). The BaTiO₃ films grown at 20 mTorr, 40 mTorr, and 60 mTorr were found to be fully strained on the SrRuO₃-buffered GdScO₃ substrates while the BaTiO₃ heterostructures grown at 70 mTorr are partially relaxed. Increasing the growth pressure from 20 to 60 mTorr leads to a decrease in the out-of-plane lattice parameter (*i.e.*, $\Delta l/l$, or the *c*-axis-lattice expansion, $\Delta c/c$, goes from 1.33% to 0.32% to almost 0% for growth at 20, 40, and 60 mTorr, respectively). X-ray rocking curve studies were done about the 002-diffraction condition for the BaTiO₃ and the 220-diffraction condition for the BaTiO₃ films grown at 20 mTorr, 40 mTorr, and 60 mTorr are similar and the FWHM of the 70 mTorr BaTiO₃ films is somewhat larger indicating the crystallinity decrease introduced by partial relaxation.

II. Polarization-Electric Field Hysteresis Loops of BaTiO₃ Films

Polarization-electric field hysteresis loops were measured on heterostructures of the form 30 nm SrRuO₃/100 nm BaTiO₃/30 nm SrRuO₃/GdScO₃ (110) (Supplementary Fig. 2a) and 30 nm SrRuO₃/50 nm BaTiO₃/30 nm SrRuO₃/GdScO₃ (110) films (Supplementary Fig. 2b), at a

Supplementary Fig. 1. Off-axis reciprocal space mapping studies about the 103- and 332-diffraction conditions of the **a**, 20 mTorr-, **b**, 40 mTorr-, **c**, 60 mTorr-, and **d**, 70 mTorr-grown BaTiO₃ films and SrRuO₃-buffered-GdScO₃ substrate, respectively. Rocking curves about the 002- and 220-diffraction conditions of the **e**, 20 mTorr-, **f**, 40 mTorr-, **g**, 60 mTorr-, and **h**, 70 mTorr-grown BaTiO₃ films and GdScO₃ substrate, respectively.

frequency of 1 kHz. Again, the BaTiO₃ layers were grown at 20 mTorr, 40 mTorr, 60 mTorr, and 70 mTorr. While in all cases robust saturation polarization is observed, the loops for heterostructures grown at 60 mTorr show the best combination of large remanent polarization and small coercive field/voltage. Supplementary Fig. 2c summarizes the coercive field and remanent polarization as a function of growth pressure, indicating the optimal growth pressure of 60 mTorr for the BaTiO₃ thin films.

Supplementary Fig. 2. Polarization-electric field hysteresis loops for **a**, 100-nm- and **b**, 50-nm-thick BaTiO₃ thin-film heterostructures as a function of growth pressure, measured at a frequency of 1 kHz. **c**, Coercive field (squares, left axis) and remanent polarization (circles, right axis) as a function of growth pressure for 100-nm- and 50-nm-thick BaTiO₃ thin film heterostructures.

III. Stoichiometry Characterization

Rutherford backscattering spectrometry (RBS) studies were completed to probe the chemistry of as-grown BaTiO₃ heterostructures. A representative set of a data for a 150-nm-thick BaTiO₃ thin

film grown at 60 mTorr is provided (Supplementary Fig. 3). The orange dotted curve is the experimental data from the Rutherford backscattering spectrum while the black solid curve is the simulation result from the software. The overlap between the orange curve and black curve indicates a good fitting, where the ratio between Ba²⁺ and Ti⁴⁺ cations is 1:1, indicating near ideal stoichiometry for these films.

Supplementary Fig. 3. Rutherford backscattering spectrometry of 150 nm BaTiO₃ thin film grown at 60 mTorr. The ratio between Ba^{2+} and Ti^{4+} cations is 1:1.

IV. Study of Different Electrode Synthesis and Fabrication Processes

Different top electrode synthesis and fabrication processes were used to produce the 30 nm SrRuO₃/100-150 nm BaTiO₃/30 nm SrRuO₃ capacitor heterostructures, on which frequencydependent polarization-electric field/voltage hysteresis loops were measured at 1 Hz, 1 kHz, and 10 kHz (Supplementary Fig. 4a-d). With the *ex situ* MgO hard mask process (wherein the top SrRuO₃ layer is grown in a separate growth after the BaTiO₃ and the bottom SrRuO₃ layer), we observe imprint in the hysteresis loops, indicating an asymmetry between the top and bottom SrRuO₃-BaTiO₃ interfaces. With the *in situ* top SrRuO₃ fabrication process (wherein the top and bottom SrRuO₃ are grown during the same growth as the BaTiO₃), the imprint is much smaller,

Supplementary Fig. 4. Frequency dependent polarization-voltage/electric field loops of **a,b**, 100-nmand **c,d**, 150-nm-thick BaTiO₃ thin films with top SrRuO₃ electrode fabricated with **a,c**, *ex situ* MgO hard mask process and **b,d**, *in situ* growth and etch process.

indicating much more symmetry in top and bottom interfaces. Identification of these tendencies and routes to produce materials with these more idealized interfaces was found to be essential to produce the combination of properties (low coercive field/voltage, robust polarization) desired in this work.

V. Scanning Transmission Electron Microscopy Studies

etc.

High angle annular dark field diffraction (HAADF)- Scanning transmission electron microscopy (STEM) studies were completed to probe the structural and interface quality of the BaTiO₃ heterostructures (Methods). Representative data is provided for a 30 nm SrRuO₃/25 nm BaTiO₃/ 30 nm SrRuO₃/GdScO₃ (110) heterostructure (Supplementary Fig. 5). Low-resolution, wide area scans show films with sharp interfaces, uniform contrast, and no evidence of extended defects,

(Supplementary Fig. 5a). A zoom-in of the same area reveals the presence of atomically sharp interfaces and nearly ideal epitaxy. Together with the X-ray diffraction data and RBS data, this helps confirm the high-quality nature of the heterostructures and provides a guide for the

dislocations.

Supplementary Fig. 5. Z-contrast STEM imaging of a 30 nm $SrRuO_3/25$ nm $BaTiO_3/30$ nm $SrRuO_3/GdScO_3$ (110) heterostructure showing **a**, materials free of defects, dislocations, etc. across large areas of the film in the low-resolution imaging. **b**, High-resolution image of a typical/representative portion of the films showing pristine interfaces in the heterostructures.

production of the optimized materials – nearly ideal structure, chemistry, interfaces, etc. Such films can likely be accomplished via any growth process, but one must pay close attention to achieving these specific metrics to achieve the desired properties.

VI. Structural Characterization of 125-225 nm BaTiO₃ Thin Films

The crystal structure of the 30 nm SrRuO₃/125-225 nm BaTiO₃/30 nm SrRuO₃/GdScO₃ (110) heterostructures characterized using X-ray was diffraction (Supplementary Fig. 6). The BaTiO₃ films were all grown at the optimized growth condition at 60 mTorr. The resulting θ -2 θ scans indicate that all films are epitaxially strained on the SrRuO₃-buffered GdScO₃ substrate with nearly zero out-of-plane lattice expansion (as small as ~0.16% at film thickness above 200 nm).

Supplementary Fig. 6. θ -2 θ X-ray diffraction scan of 30 nm SrRuO₃/125-225 nm BaTiO₃/30 nm SrRuO₃/GdScO₃ (110) heterostructures. The vertical dotted line indicates the theoretical peak position for BaTiO₃ film strained on the GdScO₃ substrate. The vertical dashed line indicates the peak position for bulk *c*-oriented BaTiO₃.

VII. Reciprocal Space Mapping of 12.5-100 nm BaTiO₃ Thin Films Grown at 60 mTorr

Reciprocal space mapping (RSM) studies of heterostructures of the form 30 nm SrRuO₃/12.5-100 nm BaTiO₃/30 nm SrRuO₃/GdScO₃ (110) were conducted using X-ray diffraction (Supplementary Fig. 7). The BaTiO₃ films were all grown at the optimized growth conditions at 60 mTorr. The

Supplementary Fig. 7. Off-axis reciprocal space mapping studies about the 103- and 332-diffraction conditions of the BaTiO₃ films and SrRuO₃-buffered-GdScO₃ substrate, respectively, for heterostructures with BaTiO₃ layer thickness of **a**, 100 nm, **b**, 80 nm, **c**, 50 nm, **d**, 25 nm and **e**, 12.5 nm.

RSM studies indicate all films are epitaxially strained on the SrRuO₃-buffered GdScO₃ substrates with the BaTiO₃ peaks at their theoretical strained positions, with negligible *c*-axis-lattice expansion (<0.02%).

VIII. Polarization-Voltage/Electric Field Hysteresis Loops of BaTiO₃ Thin Films

Frequency-dependent polarization-electric field/voltage hysteresis loops were measured on the 30 nm SrRuO₃/12.5-225 nm BaTiO₃/30 nm SrRuO₃/GdScO₃ (110) heterostructures in the frequency range from 1 Hz to 10 kHz (Supplementary Fig. 8a-j). The BaTiO₃ films were all grown at 60 mTorr.

IX. Piezoresponse Force Microscopy Scans of 25-nm-thick BaTiO₃ Thin Films

Piezoresponse force microscopy (PFM) scans were conducted on the 25 nm BaTiO₃/30 nm SrRuO₃/GdScO₃ (110) heterostructures using an atomic force microscope (MFP-3D, Asylum Research). Direct imaging of the as-grown domain state is challenging, likely because of the small

size of domains and only weak contrast was observed. Furthermore, we poled the film in a boxin-a-box pattern, where the outer box (edge length of 800 nm) was subjected to an applied voltage of -2 V and the inner box (edge length of 400 nm) was subjected to an applied voltage of +2 V

(Supplementary Fig. 9a-d). After poling, we completed the imaging (scanning from the bottom to the top of the image) and each scan took ~5 minutes. Because of the strong depolarization field in the film, and the small size of the domain structures, the phase contrast is still weak, consistent with previous studies reporting unstable polarization in poled ultrathin BaTiO₃ films⁹. Moreover, the contrast becomes weaker and weaker even during a single bottom-to-top scan (Supplementary Fig. 9a,c). During the second bottom-to-top scan (finishing after ~10 minutes), the phase and amplitude contrast has almost disappeared (Supplementary Fig. 9b,d), indicating the strong depolarization behavior of the switched area.

Supplementary Fig. 9. PFM data for poled 25-nm-thick BaTiO₃ thin films including phase images after **a**, ~5 minutes and **b**, ~10 minutes and amplitude images after **c**, ~5 minutes and **d**, ~10 minutes after poling a box-in-a-box pattern. The total scan area of all images is 1 μ m, and the outer and the inner poled boxes are 800 nm and 400 nm, respectively, across.

X. Fatigue and Retention Measurements

To further probe the performance of the BaTiO₃ thin films within ferroelectric-device structures, fatigue measurements were done for heterostructures of the form 30 nm SrRuO₃/100 nm BaTiO₃/30 nm SrRuO₃/GdScO₃ (110) (Supplementary Fig. 10a). The inset shows the Positive-Up-Negative-Down (PUND) pulse sequence applied to the heterostructures to measure the remanent polarization. Each pulse has an amplitude of $V_P = 1$ V and a width of $t_P = 0.15$ ms. The delay time between pulses is $t_D = 1$ ms. The cycling fatigue stress applied is the same as the waveform used in the normal polarization-voltage/electric field hysteresis measurement (bipolar triangle signal with an amplitude of 1 V, at a frequency of 10 kHz). The PUND pulse sequence was applied between cycles. The fatigue measurements showed almost no remanent polarization reduction up to 10^9 cycles when the experiment was terminated.

Retention measurements were also done on the same capacitor structures (Supplementary Fig. 10b). The inset is the modified PUND pulse sequence (representing the first half of the normal PUND measurement) applied to the heterostructure. Each measurement cycle consists of three pulses with same amplitude ($V_P = 1$ V) and width ($t_P = 0.15$ ms). The delay time between the first

Supplementary Fig. 10. a, Fatigue measurement on 100-nm-thick $BaTiO_3$ films grown at 60 mTorr using cyclic bipolar waveform at a frequency of 10 kHz. Inset: Positive-Up-Negative-Down (PUND) pulse sequence used to measure remanent polarization between fatigue cycles. **b**, Retention measurement on 100-nm-thick $BaTiO_3$ films grown at 60 mTorr. Inset: Modified PUND sequence used to measure the retention behavior of the sample.

pulse and the second pulse, t_{Dn} , is a variable representing the retention time in BaTiO₃ films, while the delay time between the second pulse and the third pulse is fixed at $t_0 = 1$ ms. In each measurement cycle, the total (*i.e.*, switching and non-switching) charge measured from the second pulse is denoted as P_2 while the non-switching charge measured from the third pulse is denoted as P_3 . In the initial measurement cycle, t_{Dn} was set at 1 ms (*i.e.*, equivalent to the pulse delay time in fatigue measurement), and the initial remanent polarization was calculated using P_r (*initial*) = (P_2 - P_3)/2. In the following measurement cycles, same pulse trains were applied, except that t_{Dn} was set at larger values. For each different t_{Dn} value, the remanent polarization was calculated using $P_r =$ P_2 - P_3 - P_r (*initial*). The retention measurements showed nearly zero remanent polarization reduction for up to 10 hours when the experiment was terminated. Both fatigue and retention measurements indicate the strong stability of the remanent polarization against cycling stress and retention time.

Same PUND pulse sequences are used for the fatigue and retention measurements on a heterostructure with an imprinted hysteresis loop, except that an additional voltage bias is applied to the heterostructure to compensate the imprint - e.g., for the 30 nm SrRuO₃/100 nm BaTiO₃/30 nm SrRuO₃/20 nm SrTiO₃/Si (001) heterostructure, a bias of 0.15 V is applied (insets, Fig. 4c,d).

XI. Switching-Dynamics Measurements on 25 nm BaTiO₃ Thin Films

The switching kinetics of 30 nm SrRuO₃/25 nm BaTiO₃/30 nm SrRuO₃ capacitor structures were studied to probe the switching time of the system using pulse measurements. The schematic of the pulse train⁵⁸ is shown (Supplementary Fig. 11a). A sequence of three pulses is used to: *1*. Preset the ferroelectric polarization to a well-defined state, 2. $P_2(t)$ switches the polarization and measures the corresponding total (*i.e.*, switching and non-switching) current and 3. $P_3(t)$ measures the nonswitching dielectric response current through the circuit. By subtracting $P_2 - P_3$, we

Supplementary Fig. 11. a, Schematic of the pulse train used to study ferroelectric switching dynamics on 30 nm SrRuO₃/25 nm BaTiO₃/30 nm SrRuO₃ capacitor structures. b, Time-dependent displacement current of switching at low applied electric fields, measured on 5- μ m-diameter capacitors and corresponding to the polarization transient curves in Fig. 3a. Polarization transient curves as a function of applied field, measured on c, 9.5- μ m-, d, 14- μ m-, and e, 18.5- μ m-diameter circular capacitors. f, Polarization transient curves at high electric fields, measured on 5- μ m-diameter capacitors.

disambiguously extract the displacement current associated with ferroelectric switching alone

(Supplementary Fig. 11b). The polarization transient curves are calculated using integration $\Delta P =$

 $\int_0^{+\infty} [P_2(t) - P_3(t)] dt$. Shown here is polarization transient data for various capacitor areas and

various applied fields (Supplementary Fig. 11c-f). The characteristic switching time⁵⁹, t_{sw} , is extracted from the polarization transient curve, and is defined as $t_{sw} = t (90\% P_S) - t (10\% P_S)$, where $t (10\% P_S)$ and $t (90\% P_S)$ are the times needed for the switched polarization to reach 10% and 90% of the its saturation value, respectively. To facilitate comparison amongst polarization transient curves obtained from different applied fields and capacitor sizes, all saturation polarization values are normalized to the value measured on 5-µm-diameter capacitors at 140 kV cm⁻¹.

XII. Lateral Size-Scaling on 50 nm and 100 nm BaTiO₃ Thin Films

The characteristic switching time of 30 nm SrRuO₃/50-100 nm BaTiO₃/30 nm SrRuO₃ capacitor structures were studied as a function of capacitor area at an electric field of E = 140 kV cm⁻¹ (Supplementary Fig. 12). BaTiO₃ heterostructures of all thicknesses (*i.e.*, 25, 50, and 100 nm) follow the same linear scaling law.

Moreover, all films with different thicknesses have shown similar switching time at the same electric field, which is expected from the classic Kolmogorov-Avrami-Ishibashi (KAI) model⁶⁰ which is regularly used to successfully describe polarization reversal processes in thin-film ferroelectrics^{57,61}. In the KAI model,

Supplementary Fig. 12. Characteristic switching time as a function of capacitor area on 25-, 50-, and 100-nm-thick BaTiO₃ films. The dashed lines are linear fits to the data. The stars are the projected capacitor areas at which sub-ns switching time can be achieved.

the ferroelectric switching process includes domain nucleation, forward domain growth across the thickness of the film, and subsequent sideways growth across the capacitor area. The timescale for forward domain growth in thin films is typically very short (<100 ps), while for sideways domain growth it takes ~ ns or longer depending on various intrinsic and extrinsic factors⁶². Therefore, the time needed for forward domain growth contributes very little to the total switching time and the sideways growth of domain is the rate-limiting step in ferroelectric thin film switching⁵⁷. As a result, the BaTiO₃ heterostructures with different thicknesses have shown similar switching times and almost the same projected capacitor area where sub-ns switching can be achieved (green star *vs.* blue star *vs.* orange star, Supplementary Fig. 12).

XIII. Structural Characterization of BaTiO₃ Grown on SrTiO₃/Si Substrates

The crystal structure of 30 nm SrRuO₃/100 nm BaTiO₃/30 nm SrRuO₃/20 nm SrTiO₃/Si (001) heterostructures was characterized using X-ray diffraction (Supplementary Fig. 13). The BaTiO₃

films were grown at the optimized conditions at 60 mTorr. Short range θ -2 θ X-ray diffraction scan reveals multiple BaTiO₃ peaks, including those thought to arise from strained BaTiO₃ on SrTiO₃/Si substrate (dashed line), that from bulk *c*oriented BaTiO₃ (dash-dotted line), and that from bulk *a*-oriented BaTiO₃ (dotted line). The existence of the bulk-like diffraction peaks indicates a partially

Supplementary Fig. 13. Short range θ -2 θ X-ray diffraction scan of the 30 nm SrRuO₃/100 nm BaTiO₃/30 nm SrRuO₃/20 nm SrTiO₃/Si (001) heterostructures.

relaxed BaTiO₃ film due to large thermal stresses induced by the underlying silicon²⁷ and large lattice mismatch between bulk BaTiO₃ and the SrTiO₃ buffer layer ($\sim 2.4\%$)^{13,63}.

XIV. Dielectric Constant-Voltage Measurements

Dielectric constant-voltage measurements were done on the 30 nm SrRuO₃/12.5-100 nm BaTiO₃/30 nm SrRuO₃/GdScO₃ (110) heterostructures at a frequency of 10 kHz (Supplementary Fig. 14). The BaTiO₃ films were grown at 60 mTorr.

Supplementary Fig. 14. Dielectric constant-voltage measurements on **a**, 100-nm-, **b**, 50-nm-, **c**, 25-nm-, and **d**, 12.5-nm-thick BaTiO₃ thin films.

Supplementary References

- 1. Nagatomo, T., Kosaka, T., Omori, S. & Omoto, O. Fabrication of BaTiO₃ films by RF planar-magnetron sputtering. *Ferroelectrics* **37**, 681-684 (1981).
- Abe, K., Komatsu, S., Yanase, N., Sano, K. & Kawakubo, T. Asymmetric ferroelectricity and anomalous current conduction in heteroepitaxial BaTiO₃ thin films. *Jpn. J. Appl. Phys.* 36, 5846-5853 (1997).
- 3. Yanase, N., Abe, K., Fukushima, N. & Kawakubo, T. Thickness dependence of ferroelectricity in heteroepitaxial BaTiO₃ thin film capacitors. *Jpn. J. Appl. Phys.* **38**, 5305-5308 (1999).
- 4. Yasumoto, T., Yanase, N., Abe, K. & Kawakubo, T. Epitaxial growth of BaTiO₃ thin films by high gas pressure sputtering. *Jpn. J. Appl. Phys.* **39**, 5369-5373 (2000).
- 5. Qiao, L. & Bi, X. Microstructure and ferroelectric properties of BaTiO₃ films on LaNiO₃ buffer layers by rf sputtering. *J. Cryst. Growth* **310**, 2780-2784 (2008).
- 6. Qiao, L. & Bi, X. Origin of compressive strain and phase transition characteristics of thin BaTiO₃ film grown on LaNiO₃/Si substrate. *Phys. Status Solidi A* **207**, 2511-2516 (2010).
- Zhang, W. *et al.* Space-charge dominated epitaxial BaTiO₃ heterostructures. *Acta Mater.* 85, 207-215 (2015).
- 8. Wague, B., Baboux, N., Romeo, P. R., Robach, Y. & Vilquin, B. Comparison of epitaxial and textured ferroelectric BaTiO₃ thin films. *J. Mod. Phys.* **11**, 509-516 (2020).
- 9. Dubourdieu, C. *et al.* Switching of ferroelectric polarization in epitaxial BaTiO₃ films on silicon without a conducting bottom electrode. *Nat. Nanotechnol.* **8**, 748-754 (2013).
- 10. Mazet, L., Yang, S. M., Kalinin, S. V., Schamm-Chardon, S. & Dubourdieu, C. A review of molecular beam epitaxy of ferroelectric BaTiO₃ films on Si, Ge and GaAs substrates and their applications. *Sci. Technol. Adv. Mater.* **16**, 036005 (2015).
- 11. Morgan, T. A. *et al.* Self-assembled stoichiometric barium titanate thin films grown by molecular beam epitaxy. *J. Cryst. Growth* **493**, 15-19 (2018).
- 12. Abel, S. *et al.* Large Pockels effect in micro-and nanostructured barium titanate integrated on silicon. *Nat. Mater.* **18**, 42-47 (2019).
- 13. Choi, K. J. *et al.* Enhancement of ferroelectricity in strained BaTiO₃ thin films. *Science* **306**, 1005-1009 (2004).
- 14. Cheng, H.-F., Yeh, M.-H., Liu, K.-S. & Lin, I.-N. Characteristics of BaTiO₃ films prepared by pulsed laser deposition. *Jpn. J. Appl. Phys.* **32**, 5656-5660 (1993).
- 15. Nashimoto, K., Fork, D. K., Ponce, F. A. & Tramontana, J. C. Epitaxial BaTiO₃/MgO structure grown on GaAs (100) by pulsed laser deposition. *Jpn. J. Appl. Phys.* **32**, 4099-4102 (1993).
- 16. Watanabe, Y., Matsumoto, Y., Kunitomo, H., Tanamura, M. & Nishimoto, E. Crystallographic and electrical properties of epitaxial BaTiO₃ film grown on conductive and insulating perovskite oxides. *Jpn. J. Appl. Phys.* **33**, 5182-5186 (1994).
- Srikant, V., Tarsa, E., Clarke, D. & Speck, J. Crystallographic orientation of epitaxial BaTiO₃ films: The role of thermal-expansion mismatch with the substrate. *J. Appl. Phys.* 77, 1517-1522 (1995).
- Lin, W. *et al.* Growth and ferroelectricity of epitaxial-like BaTiO₃ films on single-crystal MgO, SrTiO₃, and silicon substrates synthesized by pulsed laser deposition. *J. Appl. Phys.* 77, 6466-6471 (1995).
- 19. Kullmer, R. Dielectric and ferroelectric properties of pulsed-laser deposited BaTiO₃ films. *Appl. Phys. A* **65**, 273-279 (1997).

- 20. Li, C., Chen, Z., Zhou, Y. & Cui, D. Effect of oxygen content on the dielectric and ferroelectric properties of laser-deposited BaTiO₃ thin films. *J. Phys. Condens. Matter* **13**, 5261-5268 (2001).
- 21. Drezner, Y. & Berger, S. Nanoferroelectric domains in ultrathin BaTiO₃ films. J. Appl. Phys. **94**, 6774-6778 (2003).
- 22. Kim, D. *et al.* Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO₃ capacitors. *Phys. Rev. Lett.* **95**, 237602 (2005).
- 23. Jo, J., Kim, Y., Noh, T., Yoon, J.-G. & Song, T. Coercive fields in ultrathin BaTiO₃ capacitors. *Appl. Phys. Lett.* **89**, 232909 (2006).
- 24. Kan, D. & Shimakawa, Y. Controlled cation stoichiometry in pulsed laser depositiongrown BaTiO₃ epitaxial thin films with laser fluence. *Appl. Phys. Lett.* **99**, 081907 (2011).
- 25. Radaelli, G., Brivio, S., Fina, I. & Bertacco, R. Correlation between growth dynamics and dielectric properties of epitaxial BaTiO₃ films. *Appl. Phys. Lett.* **100**, 102904 (2012).
- 26. Dix, N. *et al.* Large out-of-plane ferroelectric polarization in flat epitaxial BaTiO₃ on CoFe₂O₄ heterostructures. *Appl. Phys. Lett.* **102**, 172907 (2013).
- 27. Scigaj, M. *et al.* Ultra-flat BaTiO₃ epitaxial films on Si (001) with large out-of-plane polarization. *Appl. Phys. Lett.* **102**, 112905 (2013).
- 28. Damodaran, A. R., Breckenfeld, E., Chen, Z., Lee, S. & Martin, L. W. Enhancement of ferroelectric Curie temperature in BaTiO₃ films via strain-induced defect dipole alignment. *Adv. Mater.* **26**, 6341-6347 (2014).
- 29. Park, D. *et al.* Studies of local structural distortions in strained ultrathin BaTiO₃ films using scanning transmission electron microscopy. *Microsc. Microanal.* **20**, 740-747 (2014).
- 30. Liu, F. *et al.* Selecting steady and transient photocurrent response in BaTiO₃ films. *Adv. Electron. Mater.* **1**, 1500171 (2015).
- 31. Li, M. *et al.* Controlling resistance switching polarities of epitaxial BaTiO₃ films by mediation of ferroelectricity and oxygen vacancies. *Adv. Electron. Mater.* **1**, 1500069 (2015).
- 32. Scigaj, M. *et al.* High ferroelectric polarization in c-oriented BaTiO₃ epitaxial thin films on SrTiO₃/Si (001). *Appl. Phys. Lett.* **109**, 122903 (2016).
- 33. Bhatia, B. *et al.* High power density pyroelectric energy conversion in nanometer-thick BaTiO₃ films. *Nanoscale Microscale Thermophys. Eng.* **20**, 137-146 (2016).
- 34. Yamada, H., Toyosaki, Y. & Sawa, A. Coherent epitaxy of a ferroelectric heterostructure on a trilayered buffer for integration into silicon. *Adv. Electron. Mater.* **2**, 1500334 (2016).
- 35. Negulescu, B. *et al.* Nonlinear piezoelectric properties of epitaxial BaTiO₃ thin film. *Ferroelectrics* **514**, 9-18 (2017).
- 36. Dasgupta, A. *et al.* Nonstoichiometry, structure, and properties of Ba_{1-x}TiO_y thin films. *J. Mater. Chem. C* **6**, 10751-10759 (2018).
- 37. Lyu, J. *et al.* Control of polar orientation and lattice strain in epitaxial BaTiO₃ films on silicon. *ACS Appl. Mater. Interfaces* **10**, 25529-25535 (2018).
- 38. Lyu, J., Fina, I., Solanas, R., Fontcuberta, J. & Sánchez, F. Tailoring lattice strain and ferroelectric polarization of epitaxial BaTiO₃ thin films on Si (001). *Sci. Rep.* **8**, 495 (2018).
- 39. Kobayashi, S., Inoue, K., Kato, T., Ikuhara, Y. & Yamamoto, T. Multiphase nanodomains in a strained BaTiO₃ film on a GdScO₃ substrate. *J. Appl. Phys.* **123**, 064102 (2018).
- 40. Peng, W. *et al.* Constructing polymorphic nanodomains in BaTiO₃ films via epitaxial symmetry engineering. *Adv. Funct. Mater.* **30**, 1910569 (2020).

- 41. Iijima, K., Terashima, T., Yamamoto, K., Hirata, K. & Bando, Y. Preparation of ferroelectric BaTiO₃ thin films by activated reactive evaporation. *Appl. Phys. Lett.* **56**, 527-529 (1990).
- 42. Terauchi, H. *et al.* Structural study of epitaxial BaTiO₃ crystals. *J. Phys. Soc. Jpn.* **61**, 2194-2197 (1992).
- 43. Yoneda, Y. *et al.* Ferroelectric phase transition in BaTiO₃ films. *J. Phys. Soc. Jpn.* **62**, 1840-1843 (1993).
- 44. Li, A. *et al.* Fabrication and electrical properties of sol-gel derived BaTiO₃ films with metallic LaNiO₃ electrode. *Appl. Phys. Lett.* **70**, 1616-1618 (1997).
- 45. Zhou, Z., Lin, Y., Tang, H. & Sodano, H. A. Hydrothermal growth of highly textured BaTiO₃ films composed of nanowires. *Nanotechnol.* **24**, 095602 (2013).
- 46. Lee, E. *et al.* Preparation and properties of ferroelectric BaTiO₃ thin films produced by the polymeric precursor method. *J. Mater. Sci. Lett.* **19**, 1457-1459 (2000).
- 47. Damodaran, A. R. *et al.* New modalities of strain-control of ferroelectric thin films. *J. Phys. Condens. Matter* **28**, 263001 (2016).
- 48. Dent, A., Bowen, C., Stevens, R., Cain, M. & Stewart, M. Effective elastic properties for unpoled barium titanate. *J. Eur. Ceram. Soc.* **27**, 3739-3743 (2007).
- 49. Smith, M. B. *et al.* Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO₃. *JACS* **130**, 6955-6963 (2008).
- 50. Lee, J. & Desu, S. The shifting of PE hysteresis loop by the asymmetric contacts on ferroelectric PZT thin films. *Ferroelectr. Lett. Sect.* **20**, 27-34 (1995).
- 51. Izyumskaya, N. *et al.* Structural and electrical properties of Pb(Zr, Ti)O₃ films grown by molecular beam epitaxy. *Appl. Phys. Lett.* **91**, 182906 (2007).
- 52. Nguyen, M. D. *et al.* Research update: enhanced energy storage density and energy efficiency of epitaxial Pb_{0.9}La_{0.1}(Zr_{0.52}Ti_{0.48})O₃ relaxor-ferroelectric thin-films deposited on silicon by pulsed laser deposition. *APL Mater.* **4**, 080701 (2016).
- 53. Xu, R. *et al.* Reducing coercive-field scaling in ferroelectric thin films via orientation control. *ACS Nano* **12**, 4736-4743 (2018).
- 54. Saremi, S. *et al.* Local control of defects and switching properties in ferroelectric thin films. *Phys. Rev. Mater.* **2**, 084414 (2018).
- 55. Shin, C. Experimental understanding of polarization switching in PZT ferroelectric capacitor. *Semicond. Sci. Technol.* **34**, 075004 (2019).
- 56. Catalan, G., Noheda, B., McAneney, J., Sinnamon, L. & Gregg, J. Strain gradients in epitaxial ferroelectrics. *Phys. Rev. B* **72**, 020102 (2005).
- 57. Pesquera, D. *et al.* Beyond substrates: strain engineering of ferroelectric membranes. *Adv. Mater.* **32**, 2003780 (2020).
- 58. Parsonnet, E. *et al.* Toward intrinsic ferroelectric switching in multiferroic BiFeO₃. *Phys. Rev. Lett.* **125**, 067601 (2020).
- 59. Li, J. *et al.* Ultrafast polarization switching in thin-film ferroelectrics. *Appl. Phys. Lett.* **84**, 1174-1176 (2004).
- 60. Ishibashi, Y. & Takagi, Y. Note on ferroelectric domain switching. J. Phys. Soc. Jpn. 31, 506-510 (1971).
- 61. Saremi, S. *et al.* Electronic transport and ferroelectric switching in ion-bombarded, defectengineered BiFeO₃ thin films. *Adv. Mater. Interfaces* **5**, 1700991 (2018).
- 62. Hu, W. J. *et al.* Universal ferroelectric switching dynamics of vinylidene fluoridetrifluoroethylene copolymer films. *Sci. Rep.* **4**, 4772 (2014).

63. Zhang, L. *et al.* Continuously tuning epitaxial strains by thermal mismatch. *ACS nano* **12**, 1306-1312 (2018).