

# Supplementary Materials for

### CO<sub>2</sub> electrolysis to multicarbon products in strong acid

Jianan Erick Huang<sup>†</sup>, Fengwang Li<sup>†\*</sup>, Adnan Ozden<sup>†</sup>, Armin Sedighian Rasouli, F. Pelayo García de Arquer, Shijie Liu, Shuzhen Zhang, Mingchuan Luo, Xue Wang, Yanwei Lum, Yi Xu, Koen Bertens, Rui Kai Miao, Cao-Thang Dinh, David Sinton<sup>\*</sup>, Edward H. Sargent<sup>\*</sup>

> †These authors contributed equally to this work. \*Corresponding author. Email: ted.sargent@utoronto.ca (E.H.S.); sinton@mie.utoronto.ca (D.S.); fengwang.li@sydney.edu.au (F.L.)

> > Published 4 June 2021, *Science* **372**, 1074 (2021) DOI: 10.1126/science.abg6582

#### This PDF file includes:

Materials and Methods Figs. S1 to S19 Tables S1 to S6 References

#### **Materials and Methods**

#### Catalysts and chemicals preparation

All the chemicals used for electrolytes, catalyst synthesis, and electrode preparation, including phosphoric acid (85%), potassium chloride, potassium phosphate monobasic, potassium sulfate, potassium iodide, potassium hydroxide, sulfuric acid, perchloric acid, Aquivion (D79-25BS), Cu nanoparticles (25 nm), carbon nanoparticles and graphite, were purchased from Sigma Aldrich. Nafion 117 membrane and platinum mesh (grid aperture of  $0.98 \times 1.4$  mm; purity 99.95%) were purchased from Fuel Cell Store. The polytetrafluoroethylene (PTFE) gas diffusion layer with 450 nm pore size was purchased from Beijing Zhongxingweiye Instrument Co., Ltd. Deionized water  $(18.2 \text{ M}\Omega)$  was used for the preparation of all electrodes. Cu and Ag were sputtered onto the PTFE substrate using pure Cu and Ag targets (>99.99%) in a vacuum environment ( $10^{-5} \sim 10^{-6}$  Torr) in an Angstrom Nexdep sputtering system. The deposition rate was kept constant at 1 Å/sec. The thickness of the catalyst layer was kept constant for all the electrodes at 300 nm. Cationaugmenting layer (CAL) is a 2 µm-thick homogeneous blend of carbon NPs (50 nm, Vulcan XC-72R) and Aquivion. The CAL-modified Cu was prepared by spray coating the CAL solution dispersed in methanol onto a 300 nm-Cu sputtered hydrophobic PTFE substrates. High-surfacearea Cu-NPs/PFSA electrodes were prepared by spray coating the following dispersion onto a PTFE substrate with 300 nm sputtered Cu in sequence: 6 µm-thick homogeneous blend of Cu nanoparticles and Aquivion, a 2 µm-thick homogeneous blend of C NPs and Aquivion, and a 2  $\mu$ m-thick homogeneous blend of graphite flakes (325 mesh, < 44  $\mu$ m, 99%, Sigma Aldrich) and Aquivion.

### Flow cell assembly

The flow cell setup was composed of three chambers: anolyte chamber, catholyte chamber, and gas flow chamber. The size of the electrode exposed was 1 cm x 1 cm. The cathode GDE of interest was clamped between catholyte chamber and gas diffusion chamber, with the substrate side facing the gas chamber and catalyst side facing the catholyte chamber. A Pt foil was employed in the anolyte chamber. The catholyte and anolyte chambers were separated by a cation exchange membrane (CEM, Nafion 117<sup>®</sup>). The catholyte chamber contained an Ag/AgCl reference electrode (3 M KCl).

Catholyte and anolyte were applied through separate silicone tubes that each connected to a peristaltic pump, offering a constant flow rate of approximately 10 mL/min. Electrolytes going through the pumps first entered each chamber from the bottom and exited from the top and flows back to their bulk electrolyte which forms a close cycle. For the gas supply, a digital mass flow controller (SmartTrack 100, Sierra) was connected to  $CO_2/N_2$  gas cylinder to control the flow rate in gas flow chamber. The  $CO_2$  gas and  $N_2$  gas cylinders were purchased from Linde Gas.

Full-cell measurements were performed in a slim flow cell setup composed of three chambers: anolyte chamber, catholyte chamber, and gas flow chamber. As schematically illustrated in Figure S15, all chambers were designed to ensure a proximity between the cathode electrode and anode electrode to minimize the ohmic losses. We assembled the cell by separating the anode and cathode compartments using a CEM and applying an equal compression torque to each of four bolts. When assembled, the distances between the CEM and cathode electrode and the CEM and anode

electrode are both 1.5-2 mm. In the full cell system, we paired  $CO_2R$  cathode with an oxygen evolution reaction (OER) anode. We used the high-surface-area CAL-modified Cu electrodes for the  $CO_2R$ , and iridium oxide supported titanium (IrOx-Ti) felt electrodes for the OER. The IrOx loading was 1.5 mg/cm<sup>2</sup>, akin to the typical loadings used in neutral media zero-gap electrolyzers (40).

#### Electrochemical measurement

All the electrochemical tests were carried out using an electrochemical workstation (Autolab PGSTAT302N) connected to a current booster (Metrohm Autolab, 10 A), except for the linear sweeping voltammetry (LSV) tests, which were performed via a CHI 660E potentiostat. The catholyte of pH 1 or lower was prepared using 1 M phosphoric acid as the base electrolyte, with the incorporation of different salts at various concentrations. The most frequently used salt was potassium chloride, with the highest concentration of 3 M.

The CO<sub>2</sub>R performance was tested in a flow cell assembly under galvanostatic mode. 1 M phosphate buffer solutions with different salts and concentrations were used as the catholyte, and 1 M phosphoric acid was used as the anolyte. Cu on PTFE (300 nm), CAL-modified Cu and Cu-NPs/PFSA were used as the cathodes in different tests.

LSV was taken in the same flow cell setup that is used for performance evaluation, and the electrolytes were saturated with N<sub>2</sub> through continuous bubbling. Cu sputtered on PTFE (300 nm), Ag/AgCl (3 M KCl), and a Pt foil were used as the working electrode, reference electrode, and counter electrode, respectively. The scan rate was kept constant at 50 mV/s. Phosphate was used as the catholyte, in which the total phosphate concentration was kept constant at 1 M. 0.5 M H<sub>2</sub>SO<sub>4</sub> was used as the anolyte. The cathode and anode chambers were separated by a CEM (Nafion<sup>®</sup> 117). For LSVs of different pH, the total potassium concentration was kept at 2 M to sustain a high ion conductivity and achieve high current density. In detail, the catholyte of pH 1 was prepared using 1 M H<sub>3</sub>PO<sub>4</sub> and 2 M KCl, and the pH was adjusted to around 1 (0.96) by a few drops of 5 M KOH. The catholyte of pH 2 was prepared using 0.5 M H<sub>3</sub>PO<sub>4</sub>, 0.5 M KH<sub>2</sub>PO<sub>4</sub>, and 1.5 M KCl, and the pH was adjusted to 1.94 through the addition of KOH. The catholyte of pH 3 was prepared using 0.1 M H<sub>3</sub>PO<sub>4</sub>, 0.9 M KH<sub>2</sub>PO<sub>4</sub>, and 1.1 M KCl, and the pH was adjusted to 2.94 through the addition of KOH. The catholyte of pH 4 was prepared using 1 M KH<sub>2</sub>PO<sub>4</sub>, and 1 M KCl, and the pH was adjusted to 3.96 by KOH. For the LSVs of different concentrations of potassium, KCl was added to 1 M H<sub>3</sub>PO<sub>4</sub> electrolyte to supply the desired concentration of potassium. The pH of 0, 1, 2, and 3 M potassium were 1.05, 0.85, 0.81, and 0.67, respectively. All potentials were converted to RHE scale via the equation:

$$E (RHE) = E (Ag/AgCl) + 0.059 \times pH + 0.210 + iR$$

where R is the resistance measured at open circuit potential and 80% of iR was compensated by the CHI software. Unless otherwise stated, the volumes of catholyte and anolyte used for circulation were 25 mL, and the liquid products were collected after 1 hour of continuous operation for analysis. The current densities reported are based on the geometric surface area.

Voltage loss breakdown study is experimentally measured for each factor (thermodynamic, pH gradient, ohmic resistance, cathodic and anodic overpotentials) using the three-electrode (Ag/AgCl, 3M KCl reference) flow cell setup at a constant current density of 1.2 A/cm<sup>2</sup> in acidic electrolyte

 $(1 \text{ M H}_3\text{PO}_4 + 3 \text{ M KCl})$ . The cathodic and anodic applied potentials (and thereby overpotentials) were measured using an Ag/AgCl reference electrode and were converted to RHE scale using the following equation:

$$E$$
 (vs. RHE) =  $E$  (Ag/AgCl) + 0.210 + 0.059 × pH<sub>surface</sub> + *i*R

where R of the anode and cathode, respectively, was measured by electrochemical impedance spectroscopy (EIS). It is noted that surface pH was used to exclude contributions from pH gradients. Nernstian loss due to pH gradient was quantified by comparing bulk pH and surface pH obtained from Comsol modelling via:

$$V_{\text{Nernst}} = 0.059 \times (pH_{\text{surface}} - pH_{\text{bulk}})$$

The overall ohmic resistance (including electrolytes and membrane) of the cell was measured by EIS.

### Carbonate/CO<sub>2</sub> crossover test

 $CO_2$  crossover was measured at a constant current density of 400 mA/cm<sup>2</sup> for 6 hours. For the neutral electrolyte, both anolyte and catholyte (25 mL for each) were 1 M KHCO<sub>3</sub>, which were saturated with  $CO_2$  prior to the experiment. For the acidic conditions, the anolyte (25 mL) was 0.5 M H<sub>2</sub>SO<sub>4</sub>, and the catholyte (25 mL) was 1 M phosphate buffer solution. 2 M of KCl was added to the catholyte to improve the ion conductivity. The CO<sub>2</sub> flow rate was kept constant at 50 sccm using a mass flow controller (Alicat Scientific). The gas products collected from the anodic outlet were analyzed by a gas chromatography (PerkinElmer Clarus 680). The pH of catholyte and anolyte were monitored by a pH meter.

### CO2RR product analysis

The gas products were collected from the gas outlet channel of the flow cell and injected into a gas chromatograph (PerkinElmer Clarus 680). The gas chromatograph was equipped with a thermal conductivity detector (TCD) for detection of H<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub> and CO signals and a flame ionization detector (FID) for the detection of CH<sub>4</sub> and C<sub>2</sub>H<sub>4</sub> signals. The gas chromatograph was composed of packed columns of Molecular Sieve 5A and Carboxen-1000 and employed Argon (Linde, 99.999%) as the carrier gas. For quantification, 1 mL of gas product was injected into the gas chromatograph, and the performance was evaluated as a function of current density, gas flow rate and gas products fraction.

Faradaic efficiency (%) = 
$$N \times F \times v \times r / (i \times V_m)$$

where N is the number of electrons transferred, F is the Faradaic constant, v is the gas flow rate, r is the concentration of detected gas product in ppm, i is the total current, and  $V_m$  is the unit molar volume of gas. The gas flow rate was measured at the outlet of the gas chamber by a bubble flow meter.

The liquid products were analyzed using <sup>1</sup>H NMR spectroscopy (600 MHz Agilent DD2 NMR Spectrometer) with water suppression. We used dimethyl sulfoxide (DMSO) as the reference

standard and deuterium oxide  $(D_2O)$  as the lock solvent. The Faradaic efficiency was calculated using the equation below:

Faradaic efficiency (%) = 
$$N \times F \times n_{\text{product}}/Q$$

where N is the number of electrons transferred, F is the Faradaic constant,  $n_{product}$  is the total moles of products, and  $Q = i \times t$  is the total charged passed during the experiment.

The single pass carbon efficiency (SPCE) of  $CO_2$  towards each product or a group of products was determined using this equation at 25 °C, 1 atm:

SPC = 
$$(j \times 60 \text{ sec})/(N \times F) \div (\text{flow rate } (L/\text{min}) \times 1 \text{ (min)})/(24.05 \text{ (L/mol)})$$

where j is the partial current density of specific group of products from  $CO_2$  reduction, N is the electron transfer for every product molecule.

### Materials characterizations

Scanning electron microscopy (SEM) imaging was performed in a high-resolution scanning electron microscope (HR-SEM, Hitachi S-5200). X-ray photoelectron spectroscopy (XPS) measurements were carried out in an ECSA device (PHI 5700) with Al K $\alpha$  X-ray energy source (1486.6 eV) for excitation. Prior to measurements, the catalysts were rinsed sequentially with 1 M H<sub>3</sub>PO<sub>4</sub> and DI water to remove any potential residual salt from the surface. Operando hard X-ray absorption spectroscopy measurements were conducted at 9BM beamline of the Advanced Photon Source (APS, Argonne National Laboratory, Lemont, Illinois). The data were processed by Athena and Artemis software incorporated into standard IFEFFIT package.

### Techno-economic analysis (TEA)

To assess the energy penalty and associated cost induced by CO<sub>2</sub> crossover, we considered two benchmark systems from literature: neutral and alkaline CO<sub>2</sub>R electrolyzers. These neutral CO<sub>2</sub>R MEA and alkaline flow cell electrolyzers were considered specifically owing to their performance metrics – industrially relevant reaction rates (>100 mA/cm<sup>2</sup>), high FE towards  $C_{2+}$  products (i.e. an ethylene FE of >60%), and high full-cell energy efficiency (EE) towards C<sub>2+</sub> products (i.e. an ethylene full-cell EE of >20%). We postulated that the proximity of these performance metrics for each system being compared (alkaline, neutral electrolyzers) will help refine the effect of CO<sub>2</sub> crossover and carbonate formation on the total energy requirement of producing  $C_{2+}$  products (i.e. ethylene). Table S1 summarizes the input parameters to the model for both systems, along with considerations of industrial costs. Majority of these input parameters were obtained from literature. The CO<sub>2</sub>R performance of both MEA electrolyzers and alkaline flow cell electrolyzers are still improving, thus we considered optimistic performance metrics (current density, selectivity, and energy efficiency) towards a single C<sub>2</sub> product for each system. The techno-economic model considers a production rate of 1 ton per day, with assumptions that H<sub>2</sub> and O<sub>2</sub> are the only byproducts coming out of the cathodic and anodic streams, respectively. Detailed calculations of cost, along with the main assumptions made, for the capital, installation, operation, carbon regeneration (for alkaline flow cell), cathode separation (for both the alkaline flow cell and MEA electrolyzers),

anode separation (for neutral MEA), can be found in our recent work (*38*). Table S2 presents the cost breakdown of alkaline flow cell electrolyzers and neutral MEA CO<sub>2</sub>R electrolyzers.

| Table S1. The operational cost breakdown of neutral CO <sub>2</sub> RR MEA electrolyzer and alkali | ne |
|----------------------------------------------------------------------------------------------------|----|
| flow-cell electrolyzer in ideal scenario.                                                          |    |

| Model input parameters               | Neutral CO <sub>2</sub> R in MEA | Alkaline CO <sub>2</sub> R in flow cell |
|--------------------------------------|----------------------------------|-----------------------------------------|
| CO <sub>2</sub> input (\$/ton)       | 30                               | 30                                      |
| H <sub>2</sub> O (\$/ton)            | 5                                | 5                                       |
| Electrolyte                          | 0.1 M KHCO <sub>3</sub>          | 3 M KOH                                 |
| Electrolyte salts cost (\$/ton)      | 750                              | 1000                                    |
| Electrolyte lifetime (year)          | 1                                | 1                                       |
| Catalysts/Membrane lifetime (year)   | 5                                | 5                                       |
| System lifetime (year)               | 30                               | 30                                      |
| Electrolyzer cost (\$/kW)            | 300                              | 300                                     |
| Electricity cost (\$/kWh)            | 0.03                             | 0.03                                    |
| Balance of Plant (%)                 | 50                               | 50                                      |
| Lang factor                          | 1                                | 1                                       |
| Capacity factor                      | 0.9                              | 0.9                                     |
| Cell voltage (V)                     | 3.7                              | 2.5                                     |
| Faradaic efficiency (%)              | 95                               | 95                                      |
| Current density (A/cm <sup>2</sup> ) | 0.2                              | 0.2                                     |
| Single pass conversion (%)           | 23.75                            | 4.5                                     |
| CO <sub>2</sub> crossover factor     | 3                                | 20                                      |
| Output product                       | C <sub>2</sub> H <sub>4</sub>    | C <sub>2</sub> H <sub>4</sub>           |

Table S2. Techno-economic assessment of neutral CO<sub>2</sub>R MEA electrolyzer and alkaline flowcell electrolyzer, together with specific cost distribution per ton of ethylene produced.

| Cost distribution         | Alkaline flow cell (\$/ton) | Neutral MEA cell (\$/ton) |
|---------------------------|-----------------------------|---------------------------|
| Electrolyzer capital      | 396.47                      | 586.78                    |
| Electrolyzer installation | 1125                        | 1590.87                   |
| Electrolyzer Operation    | 264.32                      | 391.19                    |
| Cathode separation        | 133.15                      | 133.15                    |
| Carbonate regeneration    | 2317.54                     | 0                         |
| Anode separation          | 0                           | 509.79                    |
| Summation                 | 4236.48                     | 3211.78                   |

### **COMSOL** simulations

A reaction-diffusion model was used to simulate the local pH using COMSOL Multiphysics software. All the interactions between species in the electrolyte ( $CO_2$ ,  $HCO_3^-$ ,  $CO_3^{2-}$ ,  $H_3PO_4$ ,

 $H_2PO_4^-$ ,  $HPO_4^{2-}$ ,  $PO_4^{3-}$ ,  $OH^-$ ,  $H^+$  and  $H_2O$ ) were considered. We used Henry's law to calculate the  $CO_2$  concentration<sup>1</sup>, assuming that the  $CO_2$  fugacity is 1 bar.

$$C_{CO2,aq}^0 = K_H^0 C_{CO2,gas}^0$$

 $K_H^0$  is the Henry's constant, which can be calculated by using the equation below, where T is the temperature (39).

$$\ln(K_H^0) = 93.4517 \times \frac{100}{T} - 60.2409 + 23.3585 \times \ln\left(\frac{T}{100}\right)$$

Due to the high concentration of the ions, the saturated concentration of  $CO_2$  in an electrolyte is corrected using the following equations (39).

$$\log\left(\frac{C_{CO2,aq}^0}{C_{CO2,aq}}\right) = K_s C_s$$

where  $K_s = \sum (h_{ion} + h_G)$ 

$$h_G = h_{G,0} + h_T (T - 298.15)$$

 $C_s$  is the molar concentration and  $K_s$  is the Sechenov's constant which can be estimated using equation S4-S5 and Table S3.

| Constant          | Value     |
|-------------------|-----------|
| $h_{G,0}$         | -0.0172   |
| $h_T$             | -0.000338 |
| $h_K$             | 0.0922    |
| $h_{Cl}$          | 0.0318    |
| $h_{OH}$          | 0.0839    |
| h <sub>HCO3</sub> | 0.0967    |
| h <sub>co3</sub>  | 0.1423    |
| $h_{H2PO4}$       | 0.0906    |
| $h_{HPO4}$        | 0.1499    |
| $h_{PO4}$         | 0.2119    |

#### Table S3. Sechenov's Constant values. (39)

We considered the following homogeneous and heterogenous reactions in our model, which are based on the previously published works (40-44). The heterogenous reactions (reaction 1-4) take place in the porous catalyst layer, and the homogenous reactions (reaction 5-12) occur in entire domain (45).

 $2H_2O + 2e^- \rightarrow H_2 + 2OH^ CO_2 + H_2O + 2e^- \rightarrow CO + 2OH^-$ 

$$CO_{2} + H_{2}O + 2e^{-} \rightarrow HCOOH + 2OH^{-}$$

$$CO_{2} + H_{2}O + 8e^{-} \rightarrow CH_{4} + 8OH^{-}$$

$$2CO_{2} + 8H_{2}O + 12e^{-} \rightarrow C_{2}H_{4} + 12OH^{-}$$

$$2CO_{2} + 9H_{2}O + 12e^{-} \rightarrow C_{2}H_{5}OH + 12OH^{-}$$

$$CO_{2} + H_{2}O \rightleftharpoons H^{+} + HCO_{3}^{-}$$

$$HCO_{3}^{-} \rightleftharpoons H^{+} + CO_{3}^{2-}$$

$$CO_{2} + OH^{-} \rightleftharpoons HCO_{3}^{-}$$

$$HCO_{3}^{-} + OH^{-} \rightleftharpoons CO_{3}^{2-} + H_{2}O$$

$$H_{2}O \rightleftharpoons H^{+} + OH^{-}$$

The bulk concentrations and pH values were measured experimentally and implemented in the model. The thickness of the diffusion layer was assumed to be 50  $\mu$ m. The ion species transport is based on the reaction previously listed and follows the equation below.  $J_i$  is the molar flux. The species diffusion coefficients are listed in Table S4.

$$\frac{\partial c_i}{\partial t} + \frac{\partial J_i}{\partial x} = R_i$$
$$J_i = -\frac{D_i \partial c_i}{\partial x}$$

The heterogenous reactions were simulated by adding the electrochemical reaction rates to the equation as follow:

$$\begin{aligned} \frac{\partial c_i}{\partial t} + \frac{\partial J_i}{\partial x} + r_i &= R_i \\ r_{CO_2} &= -\frac{i}{F} \left( \frac{FE_{CO}}{2} + \frac{FE_{HCOOH}}{2} + \frac{FE_{CH4}}{8} + \frac{FE_{C2H4}}{12} + \frac{FE_{C2H5OH}}{12} \right) \times \frac{\varepsilon}{L_{catalyst}} \\ r_{OH^-} &= \frac{i}{F} \times \frac{\varepsilon}{L_{catalyst}} \end{aligned}$$

An average product distribution was assumed, where S is approximated to 40% and X+Y+Z to 60% (Table S5). A porosity of 60%,  $\varepsilon$ , and length of the catalyst of 300 nm,  $L_{catalyst}$ , layer was considered in the model.

Using this approach, we have simulated from 20 mA/cm<sup>2</sup> to 1000 mA/cm<sup>2</sup> with intervals of 10 ~ 200 mA/cm<sup>2</sup> (10 ~ 25 mA/cm<sup>2</sup> for Figure 2A, and 50 ~ 200 mA/cm<sup>2</sup> for Figure S2).

| Diffusion coefficient          | Value (10 <sup>-9</sup> m <sup>2</sup> /s) |
|--------------------------------|--------------------------------------------|
| $CO_2$                         | 1.91                                       |
| CO <sub>3</sub> <sup>2-</sup>  | 0.923                                      |
| HCO <sub>3</sub> -             | 1.185                                      |
| $\mathrm{H}^+$                 | 9.31                                       |
| OH-                            | 5.273                                      |
| H <sub>3</sub> PO <sub>4</sub> | 0.918                                      |
| $H_2PO_4^-$                    | 0.918                                      |
| HPO <sub>4</sub> <sup>2-</sup> | 0.458                                      |
| PO4 <sup>3-</sup>              | 0.612                                      |

# Table S4. Diffusion coefficient values (39, 46).

# Table S5. The assumed product distribution in the modeling.

| Product | H <sub>2</sub> | CO + HCOOH | CH <sub>4</sub> | $C_2H_4 + C_2H_5OH$ | Total FE |
|---------|----------------|------------|-----------------|---------------------|----------|
| FE (%)  | S              | Х          | Y               | Z                   | X+Y+Z+S  |



Fig. S1. CO<sub>2</sub> crossover tests in different electrolytes at a constant current density of 400  $mA/cm^2$ . (A) 1 M KHCO<sub>3</sub> with AEM. Large amount of CO<sub>2</sub> crossover was observed in neutral media flow cell using 1 M KHCO<sub>3</sub>. The gas exiting from the anode outlet has a composition of CO<sub>2</sub>:O<sub>2</sub> around 7:3. (B) 0.5 M H<sub>3</sub>PO<sub>4</sub> + 0.5 M KH<sub>2</sub>PO<sub>4</sub> catholyte and 0.5 M H<sub>2</sub>SO<sub>4</sub> anolyte with CEM. (C) 0.1 M H<sub>3</sub>PO<sub>4</sub> + 0.9 M KH<sub>2</sub>PO<sub>4</sub> and 0.5 M H<sub>2</sub>SO<sub>4</sub> anolyte with CEM. (D) 1 M KH<sub>2</sub>PO<sub>4</sub> and 0.5 M H<sub>2</sub>SO<sub>4</sub> anolyte with CEM.



**Fig. S2. Modelling of pH near the cathode for 1 M phosphate electrolyte of different bulk pH. (A)** pH 1.94. **(B)** pH 3.02. **(C)** pH 3.96.



Fig. S3. Faradaic efficiency on sputtered Cu from 100 mA/cm<sup>2</sup> to 300 mA/cm<sup>2</sup> in 1 M phosphate electrolyte of different bulk pH. (A) pH 2. (B) pH 3. (C) pH 4.



**Fig. S4. Effect of KCl addition on the Faradaic efficiency of CH<sub>4</sub> and H<sub>2</sub> at 200 mA/cm<sup>2</sup>.** When 0.5 M KCl was added into 1 M H<sub>3</sub>PO<sub>4</sub>, we observed a decrease in HER activity and a slight increase in CO<sub>2</sub>RR activity towards CH<sub>4</sub>.



Fig. S5. Faradaic efficiency on sputtered Ag with different KCl concentrations at 400 mA/cm<sup>2</sup>.



Fig. S6. The effect of K<sup>+</sup> addition on voltametric responses of CO<sub>2</sub>R and HER in 1 M H<sub>3</sub>PO<sub>4</sub> electrolyte at current densities <200 mA/cm<sup>2</sup>. (A) 1 M H<sub>3</sub>PO<sub>4</sub>. (B) 1 M H<sub>3</sub>PO<sub>4</sub> + 1 M KCl. (C) 1 M H<sub>3</sub>PO<sub>4</sub> + 2 M KCl. (D) 1 M H<sub>3</sub>PO<sub>4</sub> + 3 M KCl. (E) Comparison of voltametric curves under N<sub>2</sub> flow. (F) Comparison of voltametric curves under CO<sub>2</sub> flow.



**Fig. S7.** The effect of K<sup>+</sup> on CO<sub>2</sub>R and hydrogen evolution current densities (total 400 mA/cm<sup>2</sup>). The dashed line indicates the time of switching the gas flow from N<sub>2</sub> to CO<sub>2</sub>. (A) 1 M H<sub>3</sub>PO<sub>4</sub>. (B) 1 M H<sub>3</sub>PO<sub>4</sub> + 1 M KCl. (C) 1 M H<sub>3</sub>PO<sub>4</sub> + 2 M KCl. (D) 1 M H<sub>3</sub>PO<sub>4</sub> + 3 M KCl.



**Fig. S8. Faradaic efficiency on the sputtered Cu under 400 mA/cm<sup>2</sup> in electrolytes of similar pH with different anions species.** The electrolyte was 1 M H<sub>3</sub>PO<sub>4</sub> solutions containing 1 M KCl, K<sub>2</sub>SO<sub>4</sub> or KI.



**Fig. S9. In-situ XAS measurement on the sputtered Cu catalyst.** The XAS spectra showed only coordination of metallic Cu. OCP (open circuit potential). The geometric area of the working electrode is 1 cm<sup>2</sup>.



**Fig. S10. SEM images of the high-surface area CAL-modified Cu-NPs/PFSA electrodes. (A-C)** The Cu-NPs/PFSA electrodes are composed of C NPs blended with PFSA ionomers.



**Fig. S11. Faradaic efficiency towards C<sub>2</sub>H<sub>4</sub> on CAL-modified Cu electrode from 200 mA/cm<sup>2</sup> to 800 mA/cm<sup>2</sup> in 1 M H<sub>3</sub>PO<sub>4</sub> + 3 M KCl electrolyte. The C<sub>2</sub>H<sub>4</sub> FE remains above 10% in a current density range between 300 mA/cm<sup>2</sup> and 800 mA/cm<sup>2</sup>.** 



Fig. S12. K2p XPS of electrodes after testing in  $1 \text{ M H}_3\text{PO}_4 + 3 \text{ M KCl}$  for 20 minutes. (A) CAL-modified Cu electrode. (B) Bare sputtered Cu electrode. A slight K content is detected on the surface of pure sputtered Cu upon completion of the test, which might be due to the crystalized salts from the electrolyte, while a large amount of K content was detected on the surface of the CAL-modified Cu electrode.



Fig. S13. SEM images of the high-surface-area CAL-modified Cu electrode. Cu NPs are surrounded by PFSA films.



**Fig. S14.** Faradaic efficiency distributions on high-surface-area CAL-modified Cu electrodes at various current densities in 1 M H<sub>3</sub>PO<sub>4</sub> electrolyte with different KCl concentrations. (A) 1 M KCl. (B) 2 M KCl. (C) 3 M KCl.



Fig. S15. Schematics of slim flow cell. The distance between cathode and anode electrodes is deliberately kept small (approximately 3 mm) to minimize solution resistance.



Fig. S16. *j*–V curve of high-surface-area CAL-modified Cu electrode in a slim flow cell. IrOx/Ti was used as the anode, and Nafion was used as the membrane. The full-cell voltages are presented without *i*R compensation.



Fig. S17. In-depth elemental profile of high-surface-area CAL-modified Cu electrodes via sputtering XPS. (A) As made CAL-modified electrode. (B) CAL-modified electrode after  $CO_2R$  in 1 M H<sub>3</sub>PO<sub>4</sub> and 3 M KCl electrolyte for 20 minutes at 1200 mA/cm<sup>2</sup>. We observed an even distribution of K species within the catalyst layer after CO<sub>2</sub>R, much higher content than the bias species Cl and P that come from the crystalized salts from the electrolyte. To prevent a bias that might come from crystalized KCl or potassium phosphate, we rinsed the surface with 0.1 M H<sub>3</sub>PO<sub>4</sub> after the reaction.



Fig. S18. Faradaic efficiency distributions toward CO<sub>2</sub>R products from 400 to 1,500 mA cm<sup>-</sup> <sup>2</sup> on CAL-modified Cu-NPs/PFSA electrodes. The flow rate of CO<sub>2</sub> at the inlet was 5 sccm.



Fig. S19. Breakdown of the experimentally obtained applied voltage in acidic slim flow cell at 1.2 A/cm<sup>2</sup>.

Table S6. Comparison of the carbon efficiency of our acidic media electrolyzer with those of benchmark alkaline and neutral CO<sub>2</sub>R electrolyzers from literature.

| Electrolyte pH, products                | Single pass carbon efficiency (%) | Reference |
|-----------------------------------------|-----------------------------------|-----------|
| pH ~ 7, CO                              | 47.5                              | 11        |
| pH ~ 7, CO                              | 33.1                              | 12        |
| pH ~ 14, CO                             | 8.2                               | 13        |
| pH ~ 14, CO and $C_{2+}$                | 10.4                              | 15        |
| pH ~ 14, CO, formate and $C_{2+}$       | 22.5                              | 14        |
| pH ~ 15, C <sub>2</sub> H <sub>4</sub>  | 2.2                               | 10        |
| pH ~ 15, C <sub>2</sub> H <sub>4</sub>  | 4.5                               | 7         |
| pH ~ 1, CO, formate and C <sub>2+</sub> | 77.4                              | This work |

### **References and Notes**

- 1. S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. *Nature* **488**, 294–303 (2012). <u>doi:10.1038/nature11475</u> <u>Medline</u>
- P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo, E. H. Sargent, What would it take for renewably powered electrosynthesis to displace petrochemical processes? *Science* 364, eaav3506 (2019). doi:10.1126/science.aav3506 Medline
- 3. S. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C. P. Berlinguette, Molecular electrocatalysts can mediate fast, selective CO<sub>2</sub> reduction in a flow cell. *Science* 365, 367–369 (2019). doi:10.1126/science.aax4608 Medline
- 4. Y. Wu, Z. Jiang, X. Lu, Y. Liang, H. Wang, Domino electroreduction of CO<sub>2</sub> to methanol on a molecular catalyst. *Nature* 575, 639–642 (2019). <u>doi:10.1038/s41586-019-1760-8</u> <u>Medline</u>
- 5. B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. A. Kenis, R. I. Masel, Ionic liquid–mediated selective conversion of CO<sub>2</sub> to CO at low overpotentials. *Science* 334, 643–644 (2011). doi:10.1126/science.1209786 Medline
- 6. H. Xu, D. Rebollar, H. He, L. Chong, Y. Liu, C. Liu, C.-J. Sun, T. Li, J. V. Muntean, R. E. Winans, D.-J. Liu, T. Xu, Highly selective electrocatalytic CO<sub>2</sub> reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. *Nat. Energy* 5, 623–632 (2020). doi:10.1038/s41560-020-0666-x
- 7. F. P. García de Arquer, C.-T. Dinh, A. Ozden, J. Wicks, C. McCallum, A. R. Kirmani, D.-H. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y. C. Li, F. Li, J. Edwards, L. J. Richter, S. J. Thorpe, D. Sinton, E. H. Sargent, CO<sub>2</sub> electrolysis to multicarbon products at activities greater than 1 A cm<sup>-2</sup>. *Science* **367**, 661–666 (2020). doi:10.1126/science.aay4217 Medline
- W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Electrocatalytic reduction of CO<sub>2</sub> to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. *Nat. Catal.* 3, 478–487 (2020). doi:10.1038/s41929-020-0450-0
- 9. J. A. Rabinowitz, M. W. Kanan, The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. *Nat. Commun.* **11**, 5231 (2020). <u>doi:10.1038/s41467-020-19135-8 Medline</u>
- C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. García de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, CO<sub>2</sub> electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. *Science* 360, 783–787 (2018). doi:10.1126/science.aas9100 Medline
- 11. T. Haas, R. Krause, R. Weber, M. Demler, G. Schmid, Technical photosynthesis involving CO<sub>2</sub> electrolysis and fermentation. *Nat. Catal.* **1**, 32–39 (2018). <u>doi:10.1038/s41929-017-0005-1</u>

- R. B. Kutz, Q. Chen, H. Yang, S. D. Sajjad, Z. Liu, I. R. Masel, Sustainion imidazoliumfunctionalized polymers for carbon dioxide electrolysis. *Energy Technol.* 5, 929–936 (2017). <u>doi:10.1002/ente.201600636</u>
- 13. S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H.-R. M. Jhong, A. A. Gewirth, T. Fujigaya, N. Nakashima, P. J. A. Kenis, Insights into the low overpotential electroreduction of CO<sub>2</sub> to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018). doi:10.1021/acsenergylett.7b01096
- T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis, A. A. Gewirth, Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO<sub>2</sub> to ethylene and ethanol. *J. Am. Chem. Soc.* 140, 5791–5797 (2018). doi:10.1021/jacs.8b01868 Medline
- 15. S. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi, P. J. A. Kenis, One-step electrosynthesis of ethylene and ethanol from CO<sub>2</sub> in an alkaline electrolyzer. *J. Power Sources* **301**, 219–228 (2016). doi:10.1016/j.jpowsour.2015.09.124
- D. W. Keith, G. Holmes, D. St. Angelo, K. Heidel, A process for capturing CO<sub>2</sub> from the atmosphere. *Joule* 2, 1573–1594 (2018). <u>doi:10.1016/j.joule.2018.05.006</u>
- M. Ma, E. L. Clark, K. T. Therkildsen, S. Dalsgaard, I. Chorkendorff, B. Seger, Insights into the carbon balance for CO<sub>2</sub> electroreduction on Cu using gas diffusion electrode reactor designs. *Energy Environ. Sci.* 13, 977–985 (2020). doi:10.1039/D0EE00047G
- 18. F. Li, A. Thevenon, A. Rosas-Hernández, Z. Wang, Y. Li, C. M. Gabardo, A. Ozden, C. T. Dinh, J. Li, Y. Wang, J. P. Edwards, Y. Xu, C. McCallum, L. Tao, Z.-Q. Liang, M. Luo, X. Wang, H. Li, C. P. O'Brien, C.-S. Tan, D.-H. Nam, R. Quintero-Bermudez, T.-T. Zhuang, Y. C. Li, Z. Han, R. D. Britt, D. Sinton, T. Agapie, J. C. Peters, E. H. Sargent, Molecular tuning of CO<sub>2</sub>-to-ethylene conversion. *Nature* **577**, 509–513 (2020). doi:10.1038/s41586-019-1782-2 Medline
- C. J. Bondue, M. Graf, A. Goyal, M. T. M. Koper, Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO<sub>2</sub> reduction. *J. Am. Chem. Soc.* 143, 279–285 (2021). doi:10.1021/jacs.0c10397 Medline
- 20. Z. Wang, P. Hou, Y. Wang, X. Xiang, P. Kang, Acidic electrochemical reduction of CO<sub>2</sub> using nickel nitride on multiwalled carbon nanotube as selective catalyst. ACS Sustain. Chem. Eng. 7, 6106–6112 (2019). doi:10.1021/acssuschemeng.8b06278
- R. Kortlever, C. Balemans, Y. Kwon, M. T. M. Koper, Electrochemical CO<sub>2</sub> reduction to formic acid on a Pd-based formic acid oxidation catalyst. *Catal. Today* 244, 58–62 (2015). <u>doi:10.1016/j.cattod.2014.08.001</u>
- 22. H. Ooka, M. C. Figueiredo, M. T. M. Koper, Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. *Langmuir* 33, 9307–9313 (2017). doi:10.1021/acs.langmuir.7b00696 Medline
- 23. Y. Liu, C. C. L. McCrory, Modulating the mechanism of electrocatalytic CO<sub>2</sub> reduction by cobalt phthalocyanine through polymer coordination and encapsulation. *Nat. Commun.* 10, 1683 (2019). doi:10.1038/s41467-019-09626-8 Medline

- 24. Y. Wu, K. Kamiya, T. Hashimoto, R. Sugimoto, T. Harada, K. Fujii, S. Nakanishi, Electrochemical CO<sub>2</sub> reduction using gas diffusion electrode loading Ni-doped covalent triazine frameworks in acidic electrolytes. *Electrochemistry* 88, 359–364 (2020). <u>doi:10.5796/electrochemistry.20-64036</u>
- 25. J. Shen, R. Kortlever, R. Kas, Y. Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K. J. P. Schouten, G. Mul, M. T. M. Koper, Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. *Nat. Commun.* 6, 8177 (2015). doi:10.1038/ncomms9177 Medline
- 26. I. Katsounaros, J. C. Meier, S. O. Klemm, A. A. Topalov, P. U. Biedermann, M. Auinger, K. J. J. Mayrhofer, The effective surface pH during reactions at the solid–liquid interface. *Electrochem. Commun.* 13, 634–637 (2011). doi:10.1016/j.elecom.2011.03.032
- N. Gupta, M. Gattrell, B. MacDougall, Calculation for the cathode surface concentrations in the electrochemical reduction of CO<sub>2</sub> in KHCO<sub>3</sub> solutions. *J. Appl. Electrochem.* 36, 161–172 (2006). doi:10.1007/s10800-005-9058-y
- 28. M. Jouny, W. W. Luc, F. Jiao, General techno-economic analysis of CO<sub>2</sub> electrolysis systems. *Ind. Eng. Chem. Res.* 57, 2165–2177 (2018). doi:10.1021/acs.iecr.7b03514
- 29. A. Murata, Y. Hori, Product selectivity affected by cationic species in electrochemical reduction of CO<sub>2</sub> and CO at a Cu electrode. *Bull. Chem. Soc. Jpn.* **64**, 123–127 (1991). doi:10.1246/bcsj.64.123
- 30. S. Ringe, E. L. Clark, J. Resasco, A. Walton, B. Seger, A. T. Bell, K. Chan, Understanding cation effects in electrochemical CO<sub>2</sub> reduction. *Energy Environ. Sci.* 12, 3001–3014 (2019). doi:10.1039/C9EE01341E
- 31. J. Resasco, L. D. Chen, E. Clark, C. Tsai, C. Hahn, T. F. Jaramillo, K. Chan, A. T. Bell, Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017). doi:10.1021/jacs.7b06765 Medline
- 32. S. Ringe, C. G. Morales-Guio, L. D. Chen, M. Fields, T. F. Jaramillo, C. Hahn, K. Chan, Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. *Nat. Commun.* **11**, 33 (2020). <u>doi:10.1038/s41467-019-13777-z Medline</u>
- 33. H. Zimmermann, R. Walzl, "Ethylene" in *Ullmann's Encyclopedia of Industrial Chemistry* (Wiley-VCH, 2009).
- 34. J. H. Montoya, C. Shi, K. Chan, J. K. Nørskov, Theoretical insights into a CO dimerization mechanism in CO<sub>2</sub> electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015). doi:10.1021/acs.jpclett.5b00722 Medline
- 35. R. B. Sandberg, J. H. Montoya, K. Chan, J. K. Nørskov, CO-CO coupling on Cu facets: Coverage, strain and field effects. *Surf. Sci.* 654, 56–62 (2016). doi:10.1016/j.susc.2016.08.006
- 36. A. Ozden, F. Li, F. P. García de Arquer, A. Rosas-Hernández, A. Thevenon, Y. Wang, S.-F. Hung, X. Wang, B. Chen, J. Li, J. Wicks, M. Luo, Z. Wang, T. Agapie, J. C. Peters, E. H. Sargent, D. Sinton, High-rate and efficient ethylene electrosynthesis using a

catalyst/promoter/transport layer. *ACS Energy Lett.* **5**, 2811–2818 (2020). doi:10.1021/acsenergylett.0c01266

- 37. D. S. Ripatti, T. R. Veltman, M. W. Kanan, Carbon monoxide gas diffusion electrolysis that produces concentrated C<sub>2</sub> products with high single-pass conversion. *Joule* 3, 240–256 (2019). <u>doi:10.1016/j.joule.2018.10.007</u>
- 38. A. Ozden, Y. Wang, F. Li, M. Luo, J. Sisler, A. Thevenon, A. Rosas-Hernández, T. Burdyny, Y. Lum, H. Yadegari, T. Agapie, J. C. Peters, E. H. Sargent, D. Sinton, Cascade CO<sub>2</sub> electroreduction enables efficient carbonate-free production of ethylene. *Joule* 5, 706– 719 (2021). doi:10.1016/j.joule.2021.01.007
- 39. S. Weisenberger, A. Schumpe, Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K. *AIChE J.* **42**, 298–300 (1996). <u>doi:10.1002/aic.690420130</u>
- 40. C. M. Gabardo, C. P. O'Brien, J. P. Edwards, C. McCallum, Y. Xu, C.-T. Dinh, J. Li, E. H. Sargent, D. Sinton, Continuous carbon dioxide electroreduction to concentrated Multi-carbon products using a membrane electrode assembly. *Joule* 3, 2777–2791 (2019). doi:10.1016/j.joule.2019.07.021
- 41. T. Burdyny, W. A. Smith, CO<sub>2</sub> reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. *Energy Environ. Sci.* 12, 1442–1453 (2019). doi:10.1039/C8EE03134G
- P. K. Das, X. Li, Z.-S. Liu, Effective transport coefficients in PEM fuel cell catalyst and gas diffusion layers: Beyond Bruggeman approximation. *Appl. Energy* 87, 2785–2796 (2010). doi:10.1016/j.apenergy.2009.05.006
- 43. D. M. Bernardi, M. W. Verbrugge, Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte. *AIChE J.* **37**, 1151–1163 (1991). <u>doi:10.1002/aic.690370805</u>
- 44. B. Kumar, J. P. Brian, V. Atla, S. Kumari, K. A. Bertram, R. T. White, J. M. Spurgeon, New trends in the development of heterogeneous catalysts for electrochemical CO<sub>2</sub> reduction. *Catal. Today* 270, 19–30 (2016). doi:10.1016/j.cattod.2016.02.006
- Y. Chen, N. S. Lewis, C. Xiang, Modeling the performance of a flow-through gas diffusion electrode for electrochemical reduction of CO or CO<sub>2</sub>. J. Electrochem. Soc. 167, 114503 (2020). doi:10.1149/1945-7111/ab987a