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Key role of chemistry versus bias in 
electrocatalytic oxygen evolution

Hong Nhan Nong1,2,7, Lorenz J. Falling3,7, Arno Bergmann4, Malte Klingenhof1, Hoang Phi Tran1, 
Camillo Spöri1, Rik Mom3, Janis Timoshenko4, Guido Zichittella5, Axel Knop-Gericke2,3, 
Simone Piccinin6, Javier Pérez-Ramírez5, Beatriz Roldan Cuenya4, Robert Schlögl2,3,  
Peter Strasser1, Detre Teschner2,3 ✉ & Travis E. Jones3 ✉

The oxygen evolution reaction has an important role in many alternative-energy 
schemes because it supplies the protons and electrons required for converting 
renewable electricity into chemical fuels1–3. Electrocatalysts accelerate the reaction 
by facilitating the required electron transfer4, as well as the formation and rupture of 
chemical bonds5. This involvement in fundamentally different processes results in 
complex electrochemical kinetics that can be challenging to understand and control, 
and that typically depends exponentially on overpotential1,2,6,7. Such behaviour 
emerges when the applied bias drives the reaction in line with the phenomenological 
Butler–Volmer theory, which focuses on electron transfer8, enabling the use of Tafel 
analysis to gain mechanistic insight under quasi-equilibrium9–11 or steady-state 
assumptions12. However, the charging of catalyst surfaces under bias also affects 
bond formation and rupture13–15, the effect of which on the electrocatalytic rate is not 
accounted for by the phenomenological Tafel analysis8 and is often unknown. Here 
we report pulse voltammetry and operando X-ray absorption spectroscopy 
measurements on iridium oxide to show that the applied bias does not act directly on 
the reaction coordinate, but affects the electrocatalytically generated current 
through charge accumulation in the catalyst. We find that the activation free energy 
decreases linearly with the amount of oxidative charge stored, and show that this 
relationship underlies electrocatalytic performance and can be evaluated using 
measurement and computation. We anticipate that these findings and our 
methodology will help to better understand other electrocatalytic materials and 
design systems with improved performance.

We explore the effects of chemical bond making/breaking steps on the 
oxygen evolution reaction (OER) rate of iridium oxide electrocatalysts 
using pulse voltammetry to compare potential, charge and perfor-
mance (for details, see Supplementary Discussion and Supplementary 
Fig. 1).

Influence of charge on OER activity
The charge (total with respect to cathodic bias, unless otherwise noted) 
stored in the catalyst at a given potential is quantified by integrating 
the current response to the cathodic voltage pulses, as highlighted for 
an amorphous IrOx electrocatalyst calcined at 250 °C (IrOx/Ti-250 ºC) 
in Fig. 1a. This approach gives access to the Tafel plot (Fig. 1b), as well 
as to the relationships between stored charge and potential (Ohmic 
potential drop, iR, corrected versus RHE, unless otherwise noted; RHE, 

reversible hydrogen electrode) or log(current), as shown in Fig. 1c and 
Fig. 1d, respectively. For other samples, see Supplementary Figs. 2–7.

The Tafel plot (Fig. 1b) shows the expected behaviour: up to 1.54 V 
the Tafel slope is 39 mV dec−1, in line with the 40 mV dec−1 observed for 
Ir electrocatalysts15; anodic of 1.54 V, the Tafel slope increases to about 
64 mV dec−1, which is ascribed to a change in the rate-determining step 
(rds)9. Charge is also bilinear in potential (Fig. 1c), with the slope change 
at 1.54 V indicating that the capacitance drops from about 22.1 mF 
to about 15.9 mF. These values exceed the expected double-layer 
capacitance (see Supplementary Tables 1, 2), and areal capacitances 
are 1–2 orders of magnitude greater than that of an ideal electrode 
(Supplementary Table 2). These differences suggest that additional 
means of charge storage are active16, with such pseudocapacitance 
known for Ir- (and Ru-) based materials17. In addition, unlike the Tafel 
plot, the charge–log(current) profile (Fig. 1d) is linear throughout 
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the potential range. Other materials (Supplementary Figs. 2–7) and 
the transient current response (Supplementary Discussion and Sup-
plementary Figs. 1–8) provide identical trends, suggesting that the 
observed behaviour is general and that the OER rate may respond 
directly to pseudocapacitive charge.

Charge-storage mechanism
Cyclic voltammetry performed under acidic conditions on Ir oxide sam-
ples with little or no crystallinity shows redox processes occurring at 
0.8 V–1.0 V and near the OER onset that are assigned to Iriii/Iriv and Iriv/
Irv redox couples, respectively18 (Supplementary Fig. 9b). The capaci-
tive behaviour originating from these broad redox features is smooth 
with potential—a behaviour manifest in the charge-storage mechanism. 
This is illustrated by the evolution of charge versus potential for IrOx in 
a window of about 0.8–1.6 V shown in Supplementary Fig. 10a, with the 
total capacitance (about 20 mF) relatively independent of potential. For 
other catalyst samples the magnitude of the total capacitance varies (see 
Supplementary Table 1 and Supplementary Fig. 10), but the total capaci-
tance of any particular catalyst remains fairly constant from 0.8 V to 1.6 V.

The capacitance values are put into context when using the 
Brunauer–Emmett–Teller (BET) surface areas of the catalyst samples 
(Supplementary Table 3) to estimate surface hole (h+) coverages (θh+). 
For crystalline samples (Deacon-treated Alfa Aesar, AA-D) oxidized 
from 0.8 V to about 1.6 V, this gives a value of about 0.8 h+ per surface 
Ir or about 0.8 monolayers (ML), whereas amorphous Alfa Aesar (AA) 
IrOx that is expected to undergo bulk charging reaches θh+ ≈ 8 ML in the 
same potential window. These hole concentrations are quantifiable 
by operando X-ray absorption spectroscopy (XAS), making it ideal 
for uncovering the atomic details of the charge storage (for details, 
see Supplementary Information).

For the Ir L2,3 edges, the integral intensity of their white lines (IWL), 
measured as a function of applied potential, quantifies the number of 

empty 5d states and hence the oxidation state of Ir (refs. 7,19; see Sup-
plementary Fig. 11). The plot of the steady-state IWL of IrOx (calcined 
at 250 °C) versus potential in Fig. 2a shows that the Ir oxidation state 
increases linearly with bias. Furthermore, the white-line intensity at 
11,221.5 eV tracks the IWL, enabling potentiodynamic XAS18 at this 
energy (Supplementary Fig. 11) to show that the Ir oxidation state 
increases linearly with charge up to about 20 mC (Fig. 2b). Above about 
20 mC, Ir oxidation cannot fully account for the stored charge, imply-
ing that additional means are active. This finding is consistent with Ir 
oxides entering a negative charge-transfer regime for oxidation states 
beyond Iriv, resulting in the formation of Oi− (refs. 7,20).

Two types of O with 2p hole character, μ2-O and μ1-O oxyl, can be 
distinguished in the O K-edge XAS, appearing at about 529 eV and 
around 528.3 eV, respectively20,21. Figure 2c shows no evidence for the 
presence of either species at 0.40 V, but increasing the bias to 1.67 V 
populates μ2-O. Subsequent reduction to 0.77 V results in μ2-O loss, 
which is reversed upon increasing the potential to 1.27 V, above which 
μ2-O coverage continuously increases. Thus, μ2-O formation is revers-
ible and continues into the OER, where μ1-O begins to coexist with μ1-OH 
(Supplementary Fig. 12b).

Potentiodynamic XAS at 529 eV further reveals a linear correlation 
between charge and μ2-O coverage (Fig. 2d), suggesting that oxidative 
charge is accumulated by surface deprotonation (coupled to electron 
transfer) over the entire potential range, 0.95–1.70 V (non-iR corrected). 
This relationship is general (Supplementary Fig. 13).

OER mechanism on Ir-based materials
With deprotonation identified as the dominant charge-storage mech-
anism, we study its influence on the OER rate by density functional 
theory (DFT) calculations. We first equilibrate IrO2 (110) surfaces in 
water using ab initio molecular dynamics (MD) at the Perdew–Burke–
Ernzerhof level while varying θh+ (see Supplementary Discussion and 
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Fig. 1 | Measured electrocatalytic response of IrOx/Ti-250 °C. a, Section of 
the pulse voltammetry protocol (black) showing an oxidative and reductive 
pulse with the current response (red). b, Tafel plot (potential versus 

log(current) in milliamperes) from pulse voltammetry. c, d, Charge versus 
potential (c) and versus log(current) (d) from pulse voltammetry. For other 
samples, see Supplementary Figs. 2–7.
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Supplementary Videos 1–5) and generate a phase diagram of θh+ versus 
potential (Fig. 3) using MD snapshots. Equilibration in water introduces 
Frumkin behaviour8,22 (Supplementary Fig. 14) and broadens the surface 
deprotonation window in agreement with experiment.

Knowing the phase diagram, we can turn to OER kinetics beginning 
with θh+ = 3/4 ML (Supplementary Fig. 15d) by taking the initial structure 
from an MD snapshot while retaining two water bilayers to recover sur-
face solvation effects23. Minimum-energy paths were computed in two 
ways: (i) with fixed electrochemical bias24,25 and (ii) with fixed number 
of electrons26. The former is the experimental condition; the latter is a 
constraint to probe the degree to which an elementary step is chemical.

The choice of elementary steps was made by first considering  
the OER under acidic conditions as four proton-coupled electron  
transfers26,27:
(1) e* + H O → OH + H +2 ads

+ − 
(2) eOH → O + H +ads ads

+ − 
(3) eO + H O → OOH + H +ads 2 ads

+ − 
(4) eOOH → OO + H +ads ads

+ −

where * denotes an empty μ1 site and e− denotes the electron.
Tafel analysis suggests that step 2 is rate-limiting10; step 3 has 

also been suggested as the rds (refs. 26,27), whereas the remaining 
proton-coupled electron transfers are probably barrierless26. We found 
that water nucleophilic attack on a surface oxyl (step 3) is rate-limiting 
and we focus on it (see Supplementary Information).

External bias and rate 
We consider the activation energy (Ea) for oxyl–water coupling 
with fixed bias, beginning with the potential of zero charge for the 
θh+ = 3/4 ML surface (Supplementary Fig. 15d). We find that O–O 
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signal at 11,221.5 eV (right) of steady-state operando Ir L-edge XAS of IrOx/Ti-
250 °C versus the potential, together with the dry sample and reference IrO2; 
for details, see Supplementary Fig. 11. b, Correlation of the signal change of the 
Ir L3 edge at 11,221.5 eV versus total charge. Sample: IrOx/Ti-250 °C. c, Steady-state 
operando O K-edge XAS of IrOx/graphene-250 °C at (non-iR-corrected) 

potentials applied in the order indicated. Dashed lines show the peak position 
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coupling occurs with concerted transfer of H to a μ2-O site (Fig. 4a). 
Similar to previous observations26, Ea is 0.63 eV with a heat of reaction 
(ΔHrxn) near zero, as denoted by the corresponding green triangle in 
Fig. 4b. The two additional green triangles at ΔHrxn ≈ 0 eV in Fig. 4b 
show that increasing the bias by 0.1 V and 0.5 V to capacitively charge 
the surface while constraining θh+ = 3/4 ML has little impact on Ea; the 
change is indicated by an arrow labelled QC.

If the surface oxidation state is not constrained when increasing the 
bias by 0.5 V, however, the fully oxidized limit is reached (Supplemen-
tary Fig. 15e). The effect of including this additional oxidative charge 
to yield the total charge, QT, is indicated by a dashed arrow in Fig. 4b. 
Oxidative charging reduces ΔHrxn to about −0.2 eV; moreover, oxidation 
lowers Ea (from about 0.60 eV to 0.23 eV). Similarly, Fig. 4b shows that 
reducing θh+ from 3/4 ML to 1/2 ML (Supplementary Fig. 15c) increases 
Ea to 0.78 eV, and the change induced by this total charge, Q′T, is not 
compensated by pure capacitive charging (Q′C).

These results demonstrate that Ea for O–O coupling obeys the Brøn-
sted–Evans–Polanyi (BEP) relationship, which is familiar from tradi-
tional catalysis, with Ea depending linearly on ΔHrxn, which in turn is 
controlled by oxidative (rather than capacitive) charge. According to 
classical electrochemical theory, such behaviour is consistent with 
inner-sphere reactions, in which the reacting species adsorbed on the 
electrode surface are insensitive to any double layer, and inconsistent 
with outer-sphere reactions involving weakly interacting species far 
from the electrode surface that obey Butler–Volmer kinetics8.

Oxidative charge and rate 
Whereas the previous examples suggest that the Ea value of the rds 
is dominated by bond formation/rupture chemistry5, they contain 
the electrode potential. The degree to which θh+ alone mediates the 

relationship between Ea and ΔHrxn is found by computing Ea while fixing 
the number of electrons to decouple the rds from the electrode. Doing 
so does not change the mechanism or break the linear relationship 
between Ea and ΔHrxn (red squares in Fig. 4b). That is, Ea = E0 + αΔHrxn 
in the absence of electron transfer. Furthermore, the BEP slope (α) is 
insensitive to the chemical nature of the ligands introducing oxidative 
charge (see Supplementary Fig. 16 for Bader charges). The open red 
squares in Fig. 4b, for example, show the same trend when specta-
tor O(H) is replaced by Cl (see Supplementary Discussion for details). 
Thus, as the surface becomes more reduced or oxidized, Ea increases 
or decreases, respectively. This dependence on θh+ is consistent with 
inner-sphere chemistry; removing the solvation layers results only in a 
small change to the BEP relationship (Fig. 4b), in line with the expected 
minor role of the double layer on inner-sphere reaction kinetics.

The linear dependence of log(current) on θh+ can now be seen to 
emerge because oxidation controls ΔHrxn. The BEP relationship can 
then be recast as in Fig. 4c: Ea = ζθh+ + κ, where the constants ζ and κ 
are the analogues of the BEP slope (α) and intercept (E0), respectively, 
allowing the electrocatalytic response of IrO2 to be computed through 
an Eyring-like equation:









i k θ

ζθ κ
k T

= exp −
+

, (1)0 μ1
h+

B

 where the prefactor k0 is independent of θh+ (see Supplementary equa-
tion (13)), θμ1 is the μ1-O coverage, kB is the Boltzmann constant and  
T is the temperature.

The Tafel plot and charge–log(current) profile computed using equa-
tion (1) are in agreement with experimental results (Fig. 5). A Tafel slope 
of 39 mV dec−1 is found up to 1.58 V, before increasing to 77 mV dec−1; 
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crystalline IrO2 has Tafel slopes of 43–47 mV dec−1 and 71–76 mV dec−1 
over the same potential windows (Supplementary Figs. 2, 3). However, 
from the calculations, the bend in the Tafel slope can now be ascribed 
to a change in the response of θh+ to the potential (Fig. 5b) rather than 
to the qualitative change in mechanism suggested by Tafel analysis9.  
The computed log(current) versus θh+ profile is linear (Fig. 5c), consist-
ent with experimental results.

We anticipate that this linear dependence of log(current) on charge 
is common. This is because bond rupture/formation is slow compared 
to electron transfer, and BEP behaviour is expected when bond mak-
ing/breaking is the principal contributor to the reaction coordinate5. 
In support of this assertion, we find that all the Ir-based catalysts show 
linear log(current)–charge profiles (Supplementary Figs. 2–8), and 
so do NiFe layered double hydroxides in alkaline electrolyte (Supple-
mentary Fig. 17). Whereas such behaviour can emerge trivially on an 
electrode with constant capacitance, we argue that it is rooted in OER 
catalysis, as shown for Ir-based materials.

Activation free energies 
An important consequence of these findings is that the linear activation 
free-energy relationships underlying the electrocatalytic OER can be 
probed experimentally. In these cases, the rds is decoupled from the 
potential, giving the θh+–log(current) profile a slope of −kBTln(10)/ζ. 
Assuming surface deprotonation charging and using BET areas 
from Supplementary Table 3, we find ζ ≈ −1.2 and −1.3 eV ML−1 for the 
AA-D and AA 450 °C (AA calcined at 450 °C) catalysts, respectively. 
These values compare favourably with the computed ζ ≈ −1.3 eV ML−1 
(Fig. 4c). For κ, we find 1.4–1.7 eV experimentally and about 1.6 eV  
from DFT.

Conclusions and outlook
Demonstrating how inner-sphere chemistry controls electrocatalytic 
OER rates establishes a fundamental link between thermal catalysis and 

electrocatalysis that enables tools and concepts of traditional catalysis 
to be applied to electrocatalysis. Principal among these are the linear 
activation free-energy relationships mediating catalytic rates, which 
we have shown can be measured and computed for understanding and 
improving electrocatalysis.
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