In the format provided by the authors and unedited.

The atomic-resolution crystal structure of activated [Fe]-hydrogenase

Gangfeng Huang^{1,8}, Tristan Wagner^{1,7,8}, Matthew D. Wodrich^{2,3}, Kenichi Ataka⁴, Eckhard Bill⁵, Ulrich Ermler⁶, Xile Hu² and Seigo Shima¹*

¹Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany. ²Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ³Laboratory for Computational Molecular Design, Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ⁴Department of Physics, Freie Universität Berlin, Berlin, Germany. ⁵Department Molecular Theory and Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany. ⁶Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany. ⁷Present address: Microbial Metabolism group, Max Planck Institute for Marine Microbiology, Bremen, Germany. ⁸These authors contributed equally: Gangfeng Huang, Tristan Wagner. *e-mail: shima@mpi-marburg.mpg.de

Supplementary Information

The atomic-resolution crystal structure of activated [Fe]-hydrogenase

Gangfeng Huang¹*, Tristan Wagner¹*, Matthew D. Wodrich^{2,3}, Kenichi Ataka⁴, Eckhard Bill⁵, Ulrich Ermler⁶, Xile Hu² and Seigo Shima¹[†]

¹Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany. ²Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ³Laboratory for Computational Molecular Design, Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. ⁴Department of Physics, Freie Universität Berlin, Berlin, Germany. ⁵Department Molecular Theory and Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany. ⁶Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany. *These authors contributed equally to this work. †e-mail: shima@mpi-marburg.mpg.de

Present address of Tristan Wagner: Microbial Metabolism group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany

1

Table of Content

Supplementary Methods	3
Supplementary Fig. 1 Superposition of the domains of [Fe]-hydrogenase holoenzyme from <i>M</i> .	
aeolicus in the open and closed conformations	9
Supplementary Fig. 2 Interactions of Met252 with the imidazoline ring of methenyl-H ₄ MPT ⁺ in	1
the closed active structure of [Fe]-hydrogenase1	0
Supplementary Fig. 3 Alignments of protein sequences of [Fe]-hydrogenases from different	
organisms1	1
Supplementary Fig. 4 Conformation of the FeGP cofactor and methenyl-H ₄ MPT ⁺ of the open	
and closed forms of [Fe]-hydrogenase from <i>M. aeolicus</i> 1	3
Supplementary Fig. 5 Putative proton relay in the closed form of [Fe]-hydrogenase1	4
Supplementary Fig. 6 Possible H ₂ channel in the closed form1	5
Supplementary Fig. 7 $2F_0$ - F_c electron density map of the FeGP cofactor (carbon atoms in green	i)
and methenyl-H ₄ MPT ⁺ (carbon atoms in purple) in the closed form of [Fe]-hydrogenase10	б
Supplementary Fig. 8 Zero-field Mössbauer spectra of [Fe]-hydrogenase from M. aeolicus	
recorded at 80K1	7
Supplementary Fig. 9 Infrared spectra of [Fe]-hydrogenase from M. aeolicus1	8
Supplementary Fig. 10 Coordination of the penta-coordinated iron complex structures1	9
Supplementary Fig. 11 Representation of the electron density around the C14a of the methenyl-	-
H_4MPT^+ in the closed form	0
Supplementary Fig. 12 Iterative Hirshfeld atomic charges for the methenyl-H ₄ MPT ⁺ of closed	
[Fe]-hydrogenase	1
Supplementary Fig. 13 Computed free energy profile for a portion of the catalytic cycle22	2
Supplementary Fig. 14 QM/MM optimized geometry of the active site2	3
Supplementary Fig. 15 QM/MM optimized geometries of the cofactor- and substrate-structures	
of relevant catalytic cycle intermediates and transition states2	,4
Supplementary Table 1 X-ray analysis statistics2	5
Supplementary Table 2 The catalytic activity of the [Fe]-hydrogenase variants from <i>M</i> .	
aeolicus2	6
Supplementary Table 3 Computed free energies of relevant species2	7
Supplementary References	8

Supplementary Methods

Chemicals. Tetrahydromethanopterin (H_4MPT) and methenyl- H_4MPT^+ were purified from *Methanothermobacter marburgensis* cells as described previously¹. Methylene- H_4MPT was synthesized from H_4MPT by the reaction with formaldehyde¹. Other chemical compounds were purchased from Carl Roth and Sigma-Aldrich.

Gene synthesis of [Fe]-hydrogenase from *Methanococcus aeolicus*. The [Fe]-hydrogenase gene from *M. aeolicus* (NCBI Reference Sequence: WP_011973735.1) is described below; the codon usage was optimized and synthesized by GenScript.

5'-

GATTCTGAGCTATCGTGATGCGGTTACCAACATTCTGGGTGCGCCGGCGGACTTTGC GCAGATGATGGCGGATGAAGCGATTACCCAAATGCTGGAGCTGATGCGTAACGAAG GTATCCAGAACATGGAGAACAAACTGAACCCGGGTGCGCTGACCGGTACCGCGGAC AGCATGTGCTTCGGTCCGCTGAGCGAACTGCTGCCGGCGAGCCTGAAGGTTCTGGAG GAACATAAAAAGTAAGTCGAC-3'

The DNA was synthesized and inserted into the expression vector pET-24b (+) at the NdeI and SalI restriction-enzyme digestion-sites. Genes of the mutants (M252A, M252F and M252S) were synthesized using the template of the wild-type [Fe]-hydrogenase gene.

Heterologous production of the apoenzyme of [Fe]-hydrogenase and its purification. The apoenzymes of [Fe]-hydrogenase (wild type and the mutants) were overproduced in Escherichia *coli* BL21(DE3). The recombinant *E. coli* was cultivated in the tryptone-phosphate (TP) medium² with 50-µg/ml kanamycin at 37 °C. The gene expression was started by addition of 1-mM isopropyl β -D-thiogalactopyranoside (IPTG) when the optical density at 600 nm became 0.6–0.8. The induction continued for 4 hours and the cells were harvested by centrifugation using Avanti JXN-26 centrifuge with JLA-10.500 rotor (Beckman-Coulter) at 8000 rpm for 30 min at 4 °C and the cells (~10 g) were resuspended in 50-mM 3-(N-morpholino)propanesulfonic acid (MOPS)/KOH pH 7.0 containing 1-mM dithiothreitol (DTT). The cells were disrupted by sonication using SONOPULS GM200 (Bandelin) with KE76 tip and 50 cycles on ice. The cell debris and the unbroken cells were removed by centrifugation using an Avanti JXN-26 centrifuge with a JA-25.50 rotor (Beckman-Coulter) at 15000 rpm for 30 min at 4 °C. Ammonium sulphate was added into the supernatant to the final concentration of 2 M, and incubated on ice for 10 min. The precipitation was removed by centrifugation using an Avanti JXN-26 centrifuge with JA-25.50 rotor (Beckman-Coulter) at 15000 rpm for 30 min at 4 °C. The supernatant was applied to

a Phenyl Sepharose High Performance column (75 ml, GE Healthcare Life Sciences) and eluted with a linear gradient of ammonium sulphate elution from 2 M to 0 M in 50-mM MOPS/KOH buffer pH 7.0 containing 1-mM DTT. Fractions containing the apoenzyme of [Fe]-hydrogenase were pooled and concentrated by using an Amicon Ultra-4 Centrifugation filter (30 kDa cut-off) (Millipore). Then the concentrated apoenzyme sample was applied to a HiPrep 16/60 Sephacryl S-200 HR gel filtration column (120 ml, GE Healthcare Life Sciences) equilibrated with 25-mM Tris(hydroxymethyl)aminomethane (Tris)/HCl buffer pH 7.5 containing 150-mM NaCl, 5% glycerol and 2-mM DTT. We repeated once the gel filtration using the same column and conditions to increase the purity of protein. Finally, the purified apoenzyme was concentrated to ~50 mg/ml and stored at -75 °C for the reconstitution. Protein concentration determination was performed using Bradford method using the assay solution from Bio-Rad Laboratories and bovine serum albumin as the standard.

Reconstitution of the [Fe]-hydrogenase holoenzyme. Purification of [Fe]-hydrogenase, extraction of the FeGP cofactor and reconstitution of the [Fe]-hydrogenase were performed under strictly anaerobic condition in the anaerobic chamber (Coy) containing the gas phase of $95\%N_2/5\%H_2$ under yellow light as described previously³. The FeGP cofactor was extracted from [Fe]-hydrogenase purified from *M. marburgensis* as previously described ³. To prepare the reconstituted holoenzyme, 1.0 ml of 2-mM FeGP cofactor and 1.0 ml of 1.46-mM apoenzyme of [Fe]-hydrogenase from *M. aeolicus* were mixed with 8 ml of 50-mM Tris/HCl pH 8.5. Then the mixture was incubated in the anaerobic tent at 8 °C for 30 min. Unbound FeGP cofactor was removed by washing with 10-mM MOPS/KOH pH 7.0 using Amicon Ultra-4 Centrifugation filter (30 kDa cut-off) (Millipore). Finally, the reconstituted holoenzyme was concentrated to ~50 mg/ml, which contains 10-mM MOPS/KOH pH 7.0 and stored at -75 °C for further use. Activity assay and UV-Vis spectroscopy were performed to control the quality of the reconstituted holoenzyme, which has the absorbance peak of the Fe-complex at 360 nm (ref 3). The specific activity of the reconstituted [Fe]-hydrogenase holoenzyme showed 3000 U/mg using methylene-H₄MPT as the substrate in the assay containing 120-mM potassium phosphate buffer pH 6.0 and 1-mM ethylenediaminetetraacetic acid (EDTA).

Enzyme activity assay of [Fe]-hydrogenase. The activity of [Fe]-hydrogenase was measured as previously described, using 1-ml quartz cuvette containing 700-µl assay mixture³. A 120-mM potassium phosphate buffer pH 6.0 containing 1-mM EDTA under 100% N₂ was pre-incubated at 40°C for at least 5 min. Just before assay, 7.5 µl of 2-mM methylene-H₄MPT (the final concentration in the assay mixture was 20 µM) was added. The enzyme reaction was started by addition of 10-µl sample. Increase of the absorbance at 336 nm was measured. The specific activity was calculated using the extinction coefficient of methenyl-H₄MPT⁺ ($\mathcal{E}_{336 nm} = 21.6 \text{ mM}^{-1}$ (ref ³).

Mössbauer spectroscopy. The samples for Mössbauer spectroscopy were designed to simulate the initial buffer conditions of the crystallization drops. The sample in the absence of substrate contained 26-mg/ml [Fe]-hydrogenase (0.7 mM) about 60% enriched with ⁵⁷Fe, 10% w/v polyethylene glycol 3350, 50-mM tri-sodium citrate pH 4.0 and 100-mM tri-sodium citrate. The sample in the presence of methenyl-H₄MPT⁺ contained 26-mg/ml [Fe]-hydrogenase about 60% enriched with ⁵⁷Fe, 10% w/v polyethylene glycol 3350, 100-mM sodium thiocyanate and 3-mM methenyl-H₄MPT⁺. The concentrations shown above were the final concentration in the solution. In the anaerobic tent (95%N₂/5%H₂) the 0.7-ml sample solutions were transferred into a 0.7-ml Mössbauer cup each placed in a 250-ml brown bottle, which was subsequently sealed with a rubber stopper and held with a screw cap. The gas phase in the bottles containing the sample with methenyl- H_4MPT^+ was exchanged via a needle by evacuation and refilling with 100% N₂ at 1.3 bar. The bottles were incubated at 4 °C for 1 h and then frozen at -75 °C for 1.5 h. The frozen samples in the Mössbauer cups were quickly transferred into a liquid nitrogen bath and subsequently stored in a Dewar filled with liquid nitrogen until measurements.

Data were collected on an alternating constant-acceleration spectrometer. The sample temperature was maintained constant in an Oxford Instruments Variox Mössbauer cryostat. All isomer shifts are quoted relative to iron metal at 300K. The zero-field spectra were fitted by using Lorentzian line shapes.

Infrared spectroscopy. The samples for infrared spectroscopy were prepared in amber-coloured 1.5-ml Eppendorf tubes. The sample solutions contained 150-mg/ml (4-mM) [Fe]-hydrogenase in 50-mM MES/NaOH pH 6.0 or 50-mM Tricine/NaOH pH 8.0, some of which contained 10-mM methenyl-H₄MPT⁺ (final concentrations). The sample solutions were prepared in the anaerobic tent with the gas phase $95\%N_2/5\%H_2$ and then the tubes were transferred into amber glass-bottles and the bottles were sealed with a rubber stopper and a screw cap. The gas phase of the bottles were exchanged with 100%N₂ by evacuation and refilling of the gas and then frozen in liquid nitrogen. The frozen samples in tubes were stored in a Dewar filled with liquid nitrogen until measurements.

All infrared spectra were obtained with an FTIR spectrometer (Bruker, Vertex 70V) in an attenuated total reflection (ATR) optical configuration with a Si prism of 45° incident angle and 2 active reflections (Smith Detection, DuraSamplIR IITM). Spectra were obtained with a resolution of 4 cm⁻¹. Five microliters of the sample solutions were dropped onto the effective area of a Si prism (3-mm diameter) and concentrated by slowly evaporating the solvent under mild flow of

7

argon gas. The hydration of the sample was estimated by the relative intensities of the water band (OH stretching mode) at approximately 3500 cm⁻¹ against the amide II band of the protein at approximately 1550 cm⁻¹. Spectra were measured successively during the concentration process. We selected a spectrum of a mildly hydrated sample that provided enough intensity to analyse the cofactor bands. A baseline correction was made on the selected spectrum to eliminate contributions from the water overtone band approximately 2000 cm⁻¹. Typically, 512 spectra were averaged to obtain a sufficient signal-to-noise ratio. Measurements were performed in the dark by covering the spectrometer with blackout fabric to avoid light-induced decomposition of the sample. Intensities of the observed bands from various samples were at arbitrary concentrations. For quantitative comparison of the obtained spectra, intensities of the CO bands were normalized by the peak intensities of the amide II band of each spectrum.

Supplementary Fig. 1 | Superposition of the domains of [Fe]-hydrogenase holoenzyme from *M. aeolicus* in the open and closed conformations. The structure of the open state (green cartoon) and that of the closed state in complex with the methenyl-H₄MPT⁺ (blue cartoon) are compared. **a**, The central domain formed from two C-terminal segments, RMSD 0.34 Å for 77 C α residues. **b**, The hinge region. **c**, The N-terminal domain binding the FeGP cofactor, RMSD 0.26 Å for 191 C α residues. **d**, The relative arrangement of the N-terminal domains when using only the central domain for superposition. The rotation angle between them in the closed and open state is ~30°.

Supplementary Fig. 2 | Interactions of Met252 with the imidazoline ring of methenyl- H_4MPT^+ in the closed active structure of [Fe]-hydrogenase. In the closed conformation, the imidazoline part is stabilized by interactions with Met252 (van der Waals forces between S-CH₃ and C14a). The van der Waals radius of S-CH₃ of Met252 and C14a of methenyl- H_4MPT^+ is illustrated with transparent balls. Met252 (carbon in blue), Met321 (carbon in blue), methenyl- H_4MPT^+ (carbon in purple) and the FeGP cofactor (carbon in orange) are shown in sticks and balls, in which nitrogen, oxygen, sulphur and Fe atoms were depicted in dark blue, red, yellow and dark orange, respectively.

	- β	100	α1		α.	la contra con	ηι		α3		
Nethanococcus_seolicus		•	00000	20	00000	00000	00000	2000	00000	0.0.0	
	*	19		×ų		39		-	50		
Methanococcus_aeolicus	1	INGREC	이 비 이 비 지 않는	GITNI	SRAAR	v An Kiv G	TRACTOR	10 10 1 1 1	NGAL 1	CH N	DR
Methanothermococcus_thermolithotrophicus	A VA	ILGAGC	YRTHAA	CGITNI	ARANE	VARKIVO	IPLITM	HSTIT	NCAEL	C H 🗆 🖓	DB
Methanocaldococcus_jannaschii	NBIA	ILGAGC	YBIBAA	AGITNI	MRACE	VAKEVG	KPERAL	HBSII	YGAEL	L H 🛛 🕧	PD
Methanotorris_igneus	BIA	ILGAGC	YRTHAA	GITNI	ARACE	VALOVG	KPERAL	HSTIT	NGAEL	L H 💶 C İ	DE
Methanobrevibacter_olleyae	A N R V A	ILGAGC	YRTHAN	GITNE	SRACE	VALISC	HENRAM	HST'T K	MOAEL	L R LA	- 12
Methanothermus_fervidus	MEIREVA	ILGAGC	YRTHAA	GITN	ARACE	VALEVO	RPEAL	BSTIT	NOABL	MELC	. 0
Methanolacinia_paynteri	MTIKKVA	ILCACC.	YRTHSA	GITNE	ARACE	VALMVG	RPEIAM	BSTIA	NAMES	KYLA.	. G
Methanobacterium_formicicum	A DE LA	ILGAGC	YRTHAA	GITNI	RACE	VALOVG	RP.E.TAM	RSTIA	MOAEL	K K 🖬 🛝	. G
Methanothermobacter_marburgensis	MILA	ILGAGC	YRTHAA	GITN	SRACE	VALNVG	KPEIAN	HSTIT	MGAEL	8 E E A	- G1
Methanoregula_formicica	MSIRVA	ILGAGC	YRTHAA	GITNI	ARACE	VALOVO	KPEEGM	HSTII	MOAEL	8 Y 🖬 🔊	. G
Methanocorpusculum_labreanum	* * * * E KVA	ILGAGE	YRTHAA	GITNI	ARACE	VARLAN	KCEAN	HET SI	KAAEE	KYLA	. G

Nethanococcus,	aeolicus

Methanococcus_aeolicus Methanococcus_ianaschii Methanocaldococcus_janaschii Methanotorris_igneus Methanotherwibacter_olleyae Methanothermus_fervidus Methanolacinia_paynteri Methanobacterium_formicicum Methanothermobacter_marburgensis Methanocegula_formicica Methanocorpusculum_labreanum Methanococcus_aeolicus

Methanococcus seolicus

Methanococcus aeolicus Methanothermococcus_thermolithotrophicus Methanocaldococcus_jannaschii Methanotorris_igneus Methanothermus_fervidus Methanothermus_fervidus Methanobacterium_formicicum Methanobacterium_formicicum Methanotorris igneus Methanoregula_formicica Methanocorpusculum_labreanum

Methanococcus_aeolicus

Methanococcus_seolicus Methanothermococcus_thermolithotrophicus Methanocaldococcus_jannaschii Methanocaldococcus jannaschii Methanotorris_igneus Methanotherribacter olleyae Methanotherrus_fervidus Methanotherrus_fervidus Methanotherrobacter_marburgensis Methanotherrobacter_marburgensis Methanocorpusculum_labreanum

Methanococcus_seolicus

Methanococcus_seolicus retnanococcus_seclicus Methanothermococcus_thermolithotrophicus Methanoceldococcus_jannaschii Methanoterris_igneus Methanothermus_tervidus Methanothermus_tervidus Methanotnermus_rezvicus Methanobactnia_paynteri Methanobacterium_formicicum Methanothermobacter_marburgensis Methanocorpusculum_labreanum

Methanococcus_seolicus	α12 η7 α13 η8 α14 η9 η10 α15 <u>00000000000 0000000000000000000000000</u>
Methanococcus_aeolicus	ATTOR LENGEN NEW REALTON AND CALTERADES CLEEPASER VERENX
Methanothermococcus_thermolithotrophicus	A NTO TABLER, RECINNMENTADENERALTCRADSNOFCPUSDILPPALEN AREES.
Methanocaldococcus_jannaschii	AUTOINNUMERAGEANNERALDPAALLGEADENCEGPLALIETEPTALKVLEKEKVVEERGK
Methanotorris_igneus	A HITCLLEILERSKER ANMERVEN KALTGTADSMCFCPLADILEOALEVEN KHOVEDEGEK
Methanobrevibacter_olleyae	AUTHVVALMONSGIDSMODALNEGALIGTADSMNEGHUSEJVETVLESLESKSK
Sethanothermus_fervidus	SLEOLTNINE XVGIOKNEE RUDPRALIGTADSMNFGDLSEILFIVFRYLEKERK
Methanolacinia paynteri	SUBO IT AVMENTS IN LES NUCPOVE LGYADSMNPGPLAEILPIVLES LES BAS
Methanobacterium_formicicum	SUCOVEDLENSYGEDIMENSKI, CHURCHELGENDSMNFGANADVIPSVLEVLENSKOROP
Methanothermobacter marburgensis	SLEDITAL SKYCIDKMESNIDCOCKISKICADSMNFGASALILET PTVILLENDKK
Methanoregula formicica	SIDEDITAL MNRVGIDKMEENLNDGVFLGVADSMNPGAVGETLPPVIKALEKRKK
Methanocorpusculum_labreanum	SLEDITALMENTGIANMERSECOCYFICIADSMNFGALSEIIFTYMTALEENKLQ

	0000	_	-	0.0.0	00000		0.0	0000000	0000000	-
60		70	5	80*	LEXER	90	UKLAL .	100	110	
DEVVVS	DRCRA	LD4HA	IIDS	DCKR	VELAN	LACE		MPATROA	KARARD	PKPPRC
DEVVVS	DECEN	EEPOL.	VIIDE	ED(P KE	VIEAB	LAGE	ERV	MPATRICA	VRAKARE	PRPPRO
KEVIVE		REPOL	VVIDE	NP KF	MARKEN AND	LSGNE	231	E C E E V	WEAKARE:	PREPRA
DEIVVE	BRVB D	GB F	TVVDD	DY AR	V SAR	KAGN		MPATRAK	VEZIART	PERSIO
KDIVIS	DEVED	NE.F	IVIDD	DPEE	VIEAH	K. DDF	I II	MPRIREE	VNEVARE	PKPPKS
DNIVIS	DPSEA	GE F	TVVKD	POYNE	VICAT	K.KN	ETI	MPKIBLK	ANX TYNE 1	PRPPRE
DELVVS	PPVPD	ND · · F	IVIDD	N Y EA	LAI	K.KDP	251		VNA VARDI	PKPPKE
NDSTVS	NU VIII D	Gol. T	TVIED	DYX	VERAN	KSGN		MUCHERK	VERVERD	PROPERT
NDIVIA	DEVEO	NO	TVIDD	AYAL	VIKAB	R. TN	231	MPATRAK	VKRVAND	PKPPRE

β4 120	η4 2222 1	β5 3.0	006 00000 140	β6 150	α7 200000 160	η5 	57 FT
	NPERVO BPERVO HPEOVO HPEOVO HPEOIO NPEDIO RPEDIO HPEOIO HPEOIO HPETO		DUREACEGA DUVEAVIETA DUREAVIETA DUREAVIAUA DUVEAVIAUA DUVEAVIETA DUREAVIETA DUREAVIETA DUREAVIETA DUREAVIETA DUREAVIETA		GESCPATIER GESCPATIER GNKOPDIKK GNKOPDIKK GNOPATIER GNOEKIER GDMORGIER GDMORGIER GDMORGIER GDMORGIER	PVDAIXE PVDAIXE PVDAIXE PVDAIXE PVDSIXE FADSIXC PADDIXE PADDIXE BADVIXI	UAIGTHACT GAIGTHACT GAIGTHACT GAIGTHACT GAIGTHACT GAIGTHACT GAIGTHACT GAIGTHACT GAIGTHACT GAIGTHACT GAIGTHACT

08	0000	β8 		β 9	000000000
180	190	200	210	220	
IPPERAK	IFXOLSRE	DLNIVEFH	POCVPENKGQV	LSEGYAS	BEAVERLY
12 PREAK	TEXDLERG	BLUITSYH	PGAVPEMKGQV	21 SKGX83	REAVERMY
INTIKIAK	ICKOLSRE	DINITSYN	PGCVPENKGQV	CIAKGYASI	SEAVNELY
IPTTERAK	IZXD10RD	DLSIZSYH	PGAVPENKGQV	ILSIG SI	DEAVERLY
IFTFGLNK	ITEDLS,	· · · SNVSVAS SH	PGAVPENKGQV	TIANGTADO	DASIDILM
1 TTTEFY H	I KRECCSSONVIN	REAAGLEITEYH	PGAVPENKGQV	A LAX GY BRI	CDAIKTLY
ITTLFYK	IFELSIA	.D KVEVISYH	PGNVPENKGQV	ZIAZCYASI	REAINTIY
VETTHEOR	IFEDLSSDENNIA	PKVNVSSYH	PGAVPENKGQV	LIARGYASI	EDAICRLV
I PUTKEYE	TEZOKEGDLVIKP	BTLNVISYH	PGAVPEMKGQV	K TAKGYASI	EDAIETLE
LPATKPHH	I YOR LSLL.	L KKKNVOVSSYH	PGAVPEMKGOV	FISTON AST	KOTIDOLM
INTERIAN	TENELSLY.	, ENKRYSVISYH	PGAVPEMKGOV	CISEGYAAN	EPAIORLY.

00000000	β10	η6 α10 10000000	0000000000	11	0000000000
230	240	250	260	270	280
KTAK ISRGT CIAREARGT EIGRIARGT EIGRIARGT EIGRIARGT EIGRIARGT DIAREARGT DIAREARGT EIGRIARGT EIGRIARGT TICKTARGT	AFEMPS AFEEMPS AFEEMPS AFEEMPS AFEEMPS AFEEMPS AFEEMPS AFEEMPS AFEEMPS AFEEMPS	SIGPYCDM SIGPYCDM SIGPYCDM SIGPYCDM SIGPYCDM SIGPYCDM SIGPYCDM SIGPYCDM SIGPYCDM SIGPYCDM			LGAPAD FROMADE LGAPAD FROMADE LGAPAD FROMADE LGAPAD FROMADE LGAPAD FROMADE LGAPADFROMATE LGAPADFROMATE LGAPAGFROMATE LGAPAGFROMATE LGAPACTIONA

Methanococcus_aeolicus

Methanococcus_aeolicus											
Methanothermococcus_thermolithotrophicus	С	С	С	Ε	L	E	Е				
Methanocaldococcus_jannaschii	Т	ĸ	С	Ε	Ι	М	s	0	ĸ	Ξ.	
Methanotorris_igneus	Т	ĸ	С	Ε	Ι	Н	s	ο.	A	N 3	х.
Methanobrevibacter_olleyae											
Methanothermus_fervidus											
Methanolacinia_paynteri											
Methanobacterium_formicicum		Т	C	N	I						
Methanothermobacter marburgensis											
Methanoregula formicica											
Methanocorpusculum_labreanum											

Supplementary Fig. 3 | Alignments of protein sequences of [Fe]-hydrogenases from

different organisms. All sequences are from NCBI database. Alignments was performed by Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). The figure was generated by ESPript 3.0 (ref ⁴). Met252 was strictly conserved in [Fe]-hydrogenase and marked with red closed circle in the figure.

Supplementary Fig. 4 | Conformation of the FeGP cofactor and methenyl-H₄MPT⁺ of the open and closed states of [Fe]-hydrogenase from *M. aeolicus*. Superposition of the FeGP cofactor in the open state (in green) and the closed state in complex with methenyl-H₄MPT⁺ (in purple). The N-terminal domains were superimposed. The surface of the bulky methenyl-H₄MPT⁺ is shown in light pink and the steric clashes with the FeGP cofactor in the open state is shown by a red dash curve.

Supplementary Fig. 5 | Putative proton relay in the closed form of [Fe]-hydrogenase. This possible proton relay facilitates the transfer of the proton from 2-OH group of the pyridinol part of the FeGP cofactor (shown by black dashed-line). Methenyl- H_4MPT^+ is omitted for clarification.

Supplementary Fig. 6 | Possible H₂ channel in the closed form. The surface of [Fe]-

hydrogenase is shown in sand and the FeGP cofactor (Fe in a dark orange ball), methenyl- H_4MPT^+ (purple) and Val205 (yellow) are shown in balls and sticks. Val205 is strictly conserved in all [Fe]-hydrogenases (see Supplementary Fig. 3) and might serve as filter to block the entry of unwanted solutes or gases (for example, O₂).

Supplementary Fig. 7 | $2F_0$ - F_c electron density map of the FeGP cofactor (carbon atoms in green) and methenyl-H₄MPT⁺ (carbon atoms in purple) in the closed form of [Fe]**hydrogenase.** The contour level for form A (resolution 1.06 Å) is 1.0σ in (a), 2.0σ in (b), 3.0σ in (d). In (c) two water molecules were modelled and refined with fixed B-factor of 15 Å² (which is the average B-factor for the carbon monoxide ligands of the FeGP) and an occupancy of 0.5 and 0.4 for water 1 (W1) and 2 (W2), respectively. The $2F_0$ - F_c map (in grey mesh and cyan transparent surface) is contoured at 2.0 σ and the difference map between the two water molecules is contoured at 3.0 σ and highlighted by a green transparent surface. The extra difference density indicates that two water molecules cannot properly explain the $2F_0$ - F_c density. In addition, the distance between W1-Fe is 2.1 Å and between W1-W2 is 2.4 Å. The contour level for form B (resolution 1.85 Å) is 1.0 σ for the first monomer of the dimer in the asymmetric unit (e) and 1.0 σ for the second monomer (f). A transparent surface corresponds to the map with a cut off at 1.5 σ . The extra electron density observed at 1.0 σ , which is bound to the Fe site (shown by a red arrow in f) disappears at 1.5 σ . This extra electron density might come from thiocyanate (200 mM in the crystallization solution). Thiocyanate did not inhibit [Fe]hydrogenase from *M. aeolicus* at the used concentration.

Supplementary Fig. 8 | Zero-field Mössbauer spectra of [Fe]-hydrogenase from *M. aeolicus* recorded at 80K. a, In the absence of substrates. b, In the presence of methenyl- H_4MPT^+ . The Mössbauer parameters of each spectrum are shown in each panel: Shift: isomer shift; Width: Line width; DeQ: Quadrupole splitting are given in mm/s. Subspectrum 1 (green); subspectrum 2 (blue); superposition of subspectra (red); experimental spectrum (dots).

Supplementary Fig. 9 | Infrared spectra of [Fe]-hydrogenase from *M. aeolicus*. At pH 6.0 (50-mM MES/NaOH): **a**, in the presence of methenyl- H_4MPT^+ under 100% N₂; **b**, in the absence of methenyl- H_4MPT^+ under 100% N₂. At pH 8.0 (50-mM Tricine/NaOH): **c**, in the presence of methenyl- H_4MPT^+ under 100% N₂; **d**, in the absence of methenyl- H_4MPT^+ under 100% N₂.

Supplementary Fig. 11 | Representation of the electron density around the C14a of the methenyl-H₄MPT⁺ in the closed form. a, Methenyl-H₄MPT⁺ in ball and stick representation and a $2F_{o}$ - F_{c} map contoured at 5.3 σ after refinement with best modelled substrate conformation. b, Same representation of **a**, with a 2Fo-Fc omit map contoured at 4.4 σ (in surface and grey mesh) and the F_{o} - F_{c} omit map contoured at 15.2 σ highlighted as a green mesh. c, Same representation as in **a** but using an idealized methenyl-H₄MPT⁺ containing the classic double bond C14a=N5 distance of 1.32 Å. The $2F_{o}$ - F_{c} map after refinement with this restrained model is contoured at 5.3 σ . It is worthwhile to note the C14a position outside the electron density attests a shorter N5-C14A double bond.

Supplementary Fig. 12 | Iterative Hirshfeld atomic charges for the methenyl- H_4MPT^+ of closed [Fe]-hydrogenase. In the fixed conformation (a) and fully relaxed geometries (b). Charges obtained through DFT computations at the PBE0/def2-SVP level. The structures were shown in sticks and balls, in which carbon, nitrogen, oxygen, and hydrogen atoms were depicted in grey, blue, red and white, respectively.

Supplementary Fig. 13 | Computed free energy profile for a portion of the catalytic cycle. a, The proposed catalytic cycle of [Fe]-hydrogenase on the basis of truncated forms of the FeGP cofactor and methenyl- H_4MPT^+ (MPT⁺). b, QM/MM computed free energy profile for a portion of the catalytic cycle. See computational details in Methods for a full overview of the employed computational protocol. The atomic coordinates of the optimized computational models (Step 2-5, TS3,4 and TS4,5) are available from the Supplementary Data Files 1-6.

Supplementary Fig. 14 | **QM/MM optimized geometry of the active site in step 2.** Cofactors, substrates, and amino acid residues relevant to the catalytic process are shown as ball and sticks, while the remainder of the protein is drawn in ribbon form. Cofactor- and substrate-structures of relevant catalytic cycle using fixed closed geometry. Carbon, nitrogen, oxygen, sulphur, phosphate, hydrogen and iron atoms are depicted in grey, blue, red, yellow, gold, white and brown, respectively. The atomic coordinates of the optimized computational model (step 2) is available from the Supplementary Data Files 1-6.

Supplementary Fig. 15 | QM/MM optimized geometries of the cofactor- and substratestructure of relevant catalytic cycle intermediates and transition states. Note that, for clarity, only the heavy atoms and relevant hydrogen atoms are shown. The protein structure is present, as depicted in Supplementary Fig. 14. Carbon, nitrogen, oxygen, sulphur, hydrogen and iron atoms are depicted in grey, blue, red, yellow, white and brown, respectively. The atomic coordinates of the optimized computational models (Step 2-5, TS3,4 and TS4,5) are available from the Supplementary Data Files 1-6.

	[Fe]-hydrogenase Open conformation	[Fe]-hydrogenase with methenyl-H₄MPT ⁺ Closed conformation Form A	[Fe]-hydrogenase with methenyl-H₄MPT ⁺ Closed conformation Form B
Data collection			
Wavelength (Å)	0.97980	1.00001	0.99992
Space group	<i>I</i> 4 ₁ 22	$C222_{1}$	$P2_{1}2_{1}2$
Resolution (Å)	50 - 2.30 (2.42 - 2.30)	47 - 1.06 (1.12 - 1.06)	45 - 1.85 (1.95 - 1.85)
Cell dimensions			
a, b, c (Å)	136.99, 136.99, 117.32	66.65, 66.25, 167.60	80.01, 156.48, 53.65
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0
R_{merge} (%) ^a	15.5 (102.3)	4.9 (98.1)	12.4 (113.3)
R_{pim} (%) ^a	4.3 (28.1)	2.1 (54.2)	5.5 (62.7)
$CC_{1/2}$ ^{(%)^a}	99.9 (60.2)	99.9 (67.2)	99.7 (32.3)
I/σ_I^a	17.9 (2.9)	15.4 (1.4)	8.6 (1.2)
Completeness (%) ^a	100.0 (100.0)	93.7 (74.8)	97.4 (85.0)
Redundancy ^a	13.7 (14.0)	6.1 (4.0)	6.0 (4.1)
Number of unique reflections ^a	25078 (3607)	156432 (18054)	56771 (6994)
Refinement			
Resolution (Å)	26.62 - 2.30	45.0 - 1.06	45.0 - 1.85
Number of reflections	25043	156000	56710
R_{work}/R_{free}^{b} (%)	17.1 / 19.2	11.8 / 13.4	16.1 / 19.2
Number of atoms			
Protein	2573	2776	5173
Ligands/ions	66	136	264
Solvent	107	505	592
Mean B-value (\AA^2)	43.63	19.10	28.83
Molprobity clash score, all atoms	$2.45 (100^{\text{th}} \text{ percentile})$	4.38 (79 th percentile)	1.48 (100 th percentile)
Ramachandran plot			
Favoured regions (%)	326 (95.9)	326 (96.5)	656 (96.5)
Outlier regions (%)	0	0	0
rmsd bond lengths (Å)	0.009	0.011	0.010
rmsd bond angles (°)	1.11	1.42	1.11
PDB code	6HAC	6HAV	6HAE

Supplementary Table 1 | X-ray analysis statistics.

^a Values relative to the highest resolution shell are within parentheses. ^b R_{free} was calculated as the R_{work} for 5% of the reflections that were not included in the refinement. ^c rmsd, root mean square deviation.

Enzyme	Specific activity (U/mg)	Residual activity (%)
Wild type	3000	100
Met252Ala	14	0.5
Met252Ser	37	1.2
Met252Phe	4	0.1

Supplementary Table 2 | The catalytic activity of the [Fe]-hydrogenase variants from *M. aeolicus*.

The specific activity of the oxidation of methylene- H_4MPT to methenyl- H_4MPT^+ was measured at 40 °C. One unit of the activity corresponds to the formation of one µmol of methenyl- H_4MPT^+ per min.

Supplementary Table 3 | Computed free energies of relevant species. Values in hartree. The atomic coordinates of the optimized computational models (Step 2-5, TS3,4 and TS4,5) are available from the Supplementary Data Files 1-6.

Species	M06/6-31G(d,p)//UFF QM/MM Free Energies (298K)
H ₂	-1.166944
2	-4185.815488
3	-4186.998128
TS3,4	-4186.998438
4	-4187.006827
TS4,5	-4186.990501
5	-4187.004461

Supplementary References

- 1 Shima, S. & Thauer, R. K. Tetrahydromethanopterin-specific enzymes from *Methanopyrus kandleri*. *Methods Enzymol*. **331**, 317-353 (2001).
- 2 Moore, J. T., Uppal, A., Maley, F. & Maley, G. F. Overcoming inclusion body formation in a highlevel expression system. *Protein Expres. Purif.* **4**, 160-163 (1993).
- 3 Shima, S., Schick, M. & Tamura, H. Preparation of [Fe]-hydrogenase from methanogenic archaea *Methods Enzymol* **494**, 119-137 (2011).
- 4 Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res.* **42**, W320-W324 (2014).
- 5 Chen, D. F., Scopelliti, R. & Hu, X. L. A five-coordinate iron center in the active site of [Fe]hydrogenase: hints from a model study. *Angew. Chem. Int. Ed.* **50**, 5671-5673 (2011).