

© 2010 American Chemical Society

Modified Ta₃N₅ Powder as a Photocatalyst for O₂ Evolution in a Two-Step Water Splitting System with an Iodate/Iodide Shuttle Redox Mediator under Visible Light

Masashi Tabata,[†] Kazuhiko Maeda,[†] Masanobu Higashi,[‡] Daling Lu,[§] Tsuyoshi Takata,[†] Ryu Abe,^{*,‡} and Kazunari Domen^{*,†}

[†]Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, [‡]Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan, and [§]Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received February 18, 2010. Revised Manuscript Received April 15, 2010

Modification of tantalum nitride (Ta₃N₅), which has a band gap of 2.1 eV, with nanoparticulate iridium (Ir) and rutile titania (R-TiO₂) achieved functionality as an O₂ evolution photocatalyst in a two-step water-splitting system with an IO_3^{-}/I^{-} shuttle redox mediator under visible light ($\lambda > 420$ nm) in combination with a Pt/ZrO₂/TaON H₂ evolution photocatalyst. The loaded Ir nanoparticles acted as active sites to reduce IO_3^{-} to I^{-} , while the R-TiO₂ modifier suppressed the adsorption of I⁻ on Ta₃N₅, allowing Ta₃N₅ to evolve O₂ in the two-step water-splitting system.

Photocatalytic water splitting into H₂ and O₂ by semiconducting catalysts has received much attention due to the potential for the production of clean H₂ fuel from water using solar energy.¹ Although many photocatalysts that function efficiently under ultraviolet (UV) irradiation have been developed, only a few visible light responsive photocatalysts, such as $(Ga_{1-x}Zn_x)(N_{1-x}O_x)^2$ have been reported for overall water splitting. The absorption edge for these photocatalysts is around 500 nm.^{1b} To efficiently utilize solar energy, however, compounds with absorption bands at even longer wavelengths are required. There have been some reports that (oxy)nitrides of early transition metals with d⁰-electronic configurations (e.g., Ta⁵⁺, Nb⁵⁺, and Ti⁴⁺) are potential candidates for visible light induced water splitting.^{1b} The valence bands of these materials are populated by N2p (mixed with O2p) electrons, resulting in less positive valence band levels and smaller band gaps, compared to oxide semiconductors. For example, tantalum nitride (Ta_3N_5) with a band gap of 2.1 eV (absorption edge at 600 nm) has conduction and valence band edges at ca. -0.4 and +1.7 V vs NHE, respectively, at pH 0. Ta₃N₅ also has a high quantum efficiency (QE) of up to 10% for water oxidation to O_2 under visible light with Ag⁺ as a sacrificial electron acceptor.^{3,4} However, overall water splitting has not yet been achieved with a d⁰-type (oxy)nitride photocatalyst.

On the other hand, successful two-step water-splitting systems, called Z-schemes, in which two different photocatalysts are

combined using a proper shuttle redox mediator, have been reported for several combinations of photocatalysts and redox shuttles. 5^{-14} In these systems, a wider range of visible light can be utilized than in conventional water-splitting systems because the energy required to drive each photocatalyst is reduced. Very recently, Z-scheme systems that do not rely on any redox mediator have been reported.^{15,16} The authors have reported such a system using oxynitrides.^{11–14} The absorption wavelength available for H₂ evolution was increased to 660 nm using $BaTaO_2N$,¹³ but the limit for O₂ evolution remained 500 nm (TaON).¹² The replacement of TaON by a photocatalyst with a longer absorption edge would enable more efficient utilization of visible light. Therefore, Ta_3N_5 is a promising candidate as an O_2 evolution photocatalyst for a Z-scheme water-splitting system, because it absorbs light up to 600 nm and evolves O₂ with a relatively high QE, as mentioned above. However, photocatalytic water oxidation to O_2 can be difficult to achieve because the reaction involves a four-electron process, which is especially challenging when a reversible electron acceptor (e.g., IO_3^{-}) and a narrow-gap photocatalyst (Ta_3N_5) are used.

In this work, modified Ta₃N₅ was prepared as a photocatalyst for O₂ evolution in a Z-scheme water-splitting system using an IO_3^{-}/I^{-} redox mediator. Ta₃N₅ loaded with iridium (Ir) was active for O₂ evolution in the presence of IO_3^{-} as an electron

(15) Sasaki, Y.; Nemoto, H.; Saito, K.; Kudo, A. J. Phys. Chem. C 2009, 113, 17536.

(16) Wang, X.; Liu, G.; Chen, Z.-G.; Li, F.; Wang, L.; Lu, G. Q.; Cheng, H.-M. Chem. Commun. 2009, 3452.

^{*}To whom correspondence should be addressed. (R.A.) Telephone: +81-11-706-9129. Fax: +81-11-706-9129. E-mail: ryu-abe@cat.hokudai.ac.jp. (K.D.) Telephone: +81-3-5841-1148. Fax: +81-3-5841-8838. E-mail: domen@chemsys.t. u-tokyo.ac.jp.

^{(1) (}a) Lee, J. S. Catal. Surv. Asia 2005, 9, 217. (b) Maeda, K.; Domen, K. J. Phys. Chem. C 2007, 111, 7851. (c) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.

⁽²⁾ Maeda, K.; Takata, T.; Hara, M.; Sato, N.; Inoue, Y.; Kobayashi, H.; Domen, K. J. Am. Chem. Soc. 2005, 127, 8286.

⁽³⁾ Hitoki, G.; Ishikawa, A.; Takata, T.; Kondo, J. N.; Hara, M.; Domen, K. Chem. Lett. **2002**, *31*, 736.

⁽⁴⁾ Chun, W. J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J. N.; Hara, M.; Kawai, M.; Matsumoto, Y.; Domen, K. J. Phys. Chem. B 2003, 107, 1798.

⁽⁵⁾ Sayama, K.; Yoshida, R.; Kusama, H.; Okabe, K.; Abe, Y.; Arakawa, H. Chem. Phys. Lett. **1997**, 277, 387.

⁽⁶⁾ Fujihara, K.; Ohno, T.; Matsumura, M. J. Chem. Soc., Faraday Trans. 1998, 94, 3705.

⁽⁷⁾ Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H. Chem. Commun. 2001, 2416.

⁽⁸⁾ Kato, H.; Hori, M.; Konta, R.; Shimodaira, Y.; Kudo, A. *Chem. Lett.* **2004**, *33*, 1348.

⁽⁹⁾ Abe, R.; Sayama, K.; Sugihara, H. J. Phys. Chem. B 2005, 109, 16052.

⁽¹⁰⁾ Sasaki, Y.; Iwase, A.; Kato, H.; Kudo, A. J. Catal. 2008, 259, 133.

⁽¹¹⁾ Abe, R.; Takata, T.; Sugihara, H.; Domen, K. *Chem. Commun.* **2005**, 3829. (12) Higashi, M.; Abe, R.; Ishikawa, A.; Takata, T.; Ohtani, B.; Domen, K.

⁽¹²⁾ Higgshi, M.; Aba, P.; Taramura, K.; Takata, T.; Ohtani, B.; Domen, K. (13) Higgshi, M.; Aba, P.; Taramura, K.; Takata, T.; Ohtani, R.; Domen, K.

⁽¹³⁾ Higashi, M.; Abe, R.; Teramura, K.; Takata, T.; Ohtani, B.; Domen, K. Chem. Phys. Lett. **2008**, 452, 120.

 ^{(14) (}a) Maeda, K.; Terashima, H.; Kase, K.; Higashi, M.; Tabata, M.; Domen,
K. Bull. Chem. Soc. Jpn. 2008, 81, 927. (b) Maeda, K.; Higashi, M.; Lu, D.; Abe, R.;
Domen, K. J. Am. Chem. Soc. 2010, 132, 5858.

Figure 1. I-V characteristics of Ta₃N₅ electrodes (a) with and (b) without loading Ir in aqueous solution containing different concentrations of NaIO₃.

acceptor. Additionally, loading rutile titania (R-TiO₂) effectively controlled the surface adsorption of the IO_3^-/I^- redox pair, suppressing the backward reaction. By combining the above with TaON loaded with nanoparticulate ZrO₂ and Pt (Pt/ZrO₂/ TaON)¹⁴ as an H₂ evolution photocatalyst, a Z-scheme type system for overall water splitting under visible light ($\lambda > 420$ nm) was achieved.

First, we examined photocatalytic O_2 evolution over Ta_3N_5 loaded with various cocatalysts in the presence of IO_3^- as an electron acceptor under visible light (Table S1, Supporting Information). The following elementary reactions occur on a photocatalyst during O_2 evolution from an aqueous NaIO₃ solution under visible light:⁹

photocatalyst +
$$h\nu$$
 (> band gap energy) $\rightarrow e^- + h^+$ (1)

$$2H_2O + 4h^+ \rightarrow O_2 + 4H^+ \text{ (valence band)}$$
 (2)

$$IO_3^- + 6e^- + 3H_2O \rightarrow I^- + 6OH^-$$
 (conduction band) (3)

Although bare Ta₃N₅ had no O₂-evolution activity, Ru/Ta₃N₅, Rh/Ta₃N₅, and Ir/Ta₃N₅ evolved O₂ from an aqueous solution containing IO₃⁻⁻, and Ir/Ta₃N₅ exhibited the highest O₂ evolution activity (34.0 μ mol h⁻¹). The production of I⁻ anions in the solution after O₂ evolution over Ir/Ta₃N₅ was confirmed qualitatively by ion chromatography, although an accurate quantitative determination of the I⁻ concentration was difficult due to the adsorption of I⁻ onto the photocatalyst powder. These results suggested the possibility that Ir/Ta₃N₅ could be applied as a building block for O₂ evolution in a Z-scheme with an IO₃⁻/I⁻ shuttle redox mediator.

X-ray photoelectron spectroscopy indicated that the valence state of the loaded Ir was identical to that of metallic Ir powder (Figure S1, Supporting Information). It was also revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that Ir nanoparticles about 5 nm in size were loaded on the Ta₃N₅ (Figure S2, Supporting Information). To clarify the function of the Ir cocatalyst, electrochemical measurements were conducted using porous Ta₃N₅ electrodes in an aqueous solution containing IO_3^- ions. These measurements indicated that the reduction of IO_3^- on the surface of Ta_3N_5 is difficult, as little current was observed in the unmodified Ta₃N₅ electrode (Figure 1b). However, an appreciable cathodic current was observed in an Ir-modified Ta₃N₅ electrode, and this current was markedly increased by the addition of IO₃⁻ ions to the solution (Figure 1a). The Ir cocatalyst loaded on Ta₃N₅ greatly assisted the reduction of IO_3^{-} , probably by functioning as an active site for that

Table 1. Initial Rate of O₂ Evolution on Modified Ta₃N₅ Photocatalysts from Aqueous NaIO₃ Solution (4 mM) under Visible Light ($\lambda > 420 \text{ nm}$)^{*a*}

entry	catalyst	rate of O_2 evolution (μ mol·h ⁻¹)	
		without NaI additive	with NaI additive (1 mM)
1	Ta ₃ N ₅	0	0
2	Ir/Ta ₃ N ₅	25.0	0.8
3	Ir/R-TiO ₂ /Ta ₃ N ₅	19.8	8.2
4	Ir/R-TiO ₂	0	0
5	$R-TiO_2/Ta_3N_5$	0	0
6	Ir/A-TiO ₂ /Ta ₃ N ₅	24.1	1.8
a -			

^{*a*} Reaction conditions: catalyst, 0.05 g (Ir 5 wt % loaded); aqueous solution, 250 mL; light source, xenon lamp (300 W) fitted with a cutoff filter; reaction vessel, Pyrex side-irradiation type.

reduction. Moreover, while bare Ta_3N_5 photocatalyst resulted in no H₂ evolution activity from an aqueous solution containing methanol as an electron donor, Ir/Ta₃N₅ photocatalyst exhibited H₂ evolution activity in the presence of methanol. These results further support the idea that Ir on Ta₃N₅ functions as a cocatalyst promoting the reduction reaction. In summary, efficient O₂ evolution from an aqueous solution containing IO₃⁻ proceeds over Ir/Ta₃N₅ because the metallic Ir nanoparticles function as active sites for the reduction of IO₃⁻. However, it is noted that the metallic state of Ir cocatalysts on Ta₃N₅ was not completely stable during reaction, undergoing oxidation to IrO_x to some extent. XPS analysis showed that the Ir 4f photoelectron signal assigned to Ir metal remained largely unchanged, but shoulder peak(s) at higher binding energy side got enlarged after O₂ evolution reaction (Figure S1, Supporting Information).

Table 1 shows the O_2 evolution activity of the modified Ta_3N_5 photocatalysts in aqueous NaIO₃ solution with and without the intentional addition of NaI. Although Ir/Ta₃N₅ evolved O_2 in the presence of IO₃⁻, the activity decreased significantly when even a small amount of I⁻ was added to the solution (entry 2). This can be attributed to the backward reaction (oxidation of I⁻) that can occur in the valence band of an O_2 evolution photocatalyst:⁹

$$I^- + 6h^+ + 6OH^- \rightarrow IO_3^- + 3H_2O$$
 (valence band) (4)

Since the redox potentials of O_2/H_2O and IO_3^-/I^- are 1.23 and 1.09 V (vs NHE at pH 0), respectively, the oxidation of I⁻ to IO_3^- is thermodynamically favorable compared with that of H_2O to O_2 . As a result, in an aqueous solution containing both IO_3^- and I⁻, the preferential oxidation of I⁻ to IO_3^- occurs, instead of H_2O oxidation on the Ir/Ta_3N_5 photocatalyst.

The suppression of this backward reaction is necessary to apply Ta₃N₅ to an O₂ evolution system in the Z-scheme, because both I⁻ and IO₃⁻ ions exist in the Z-scheme overall water-splitting environment. Rutile titania (R-TiO₂) has been reported as a photocatalyst for O₂ evolution with a unique surface adsorption property:⁹ IO₃⁻ ions adsorb more easily than I⁻ ions onto the surface of R-TiO₂. This property allows R-TiO₂ to selectively promote O₂ evolution using IO₃⁻ as an electron acceptor, even in the presence of a considerable amount of I⁻ in the solution. We thus attempted to support R-TiO₂ on Ta₃N₅ according to the method by Gopal et al.¹⁷ SEM and TEM observation of this R-TiO₂/Ta₃N₅ showed that the Ta₃N₅ surface was covered with nanoparticulate R-TiO₂ (Figure 2b,c). It should be noted that the particle size of Ta₃N₅ (200–500 nm) remains unchanged upon

⁽¹⁷⁾ Gopal, M.; Moberly Chan, W. J.; De Jonghe, L. C. J. Mater. Sci. 1997, 32, 6001.

Figure 2. SEM images of (a) Ta_3N_5 and (b) R-TiO₂/Ta₃N₅ and TEM images of (c) R-TiO₂/Ta₃N₅ and (d) Ir/R-TiO₂/Ta₃N₅. Panel (e) indicates the EDX spectrum of the sample shown in (d).

modification with R-TiO₂ (Figure 2a,c). Although there was little difference between the X-ray diffraction (XRD) patterns of Ta_3N_5 and R-TiO₂/Ta₃N₅, the preparation of R-TiO₂ by the method reported in the literature, without Ta_3N_5 , resulted in the production of TiO₂ with a rutile structure (Figure S3, Supporting Information). Therefore, nanoparticulate rutile TiO₂ was successfully introduced onto the Ta_3N_5 surface, although its detection by XRD was difficult, due primarily to the small particle size.

As shown in Table 1, the O_2 evolution activity of $Ir/R-TiO_2/Ta_3N_5$ in an aqueous solution containing both IO_3^- and I^- (entry 3) was 10 times higher than that of Ir/Ta_3N_5 (entry 2). In this enhancement, R-TiO₂ functioned not as a photocatalyst but as a modifier, because Ir-loaded R-TiO₂ prepared as in the literature, without Ta_3N_5 , did not evolve O_2 from an aqueous solution containing IO_3^- under visible light irradiation (entry 4). In addition, R-TiO₂/Ta₃N₅ without Ir cocatalyst showed no O_2 evolution activity in aqueous NaIO₃ solution (entry 5), indicating

that the R-TiO₂ prepared in this study did not function as a cocatalyst to promote the surface reaction. It was difficult to estimate the difference in the amount of adsorbed ions between Ir/Ta₃N₅ and Ir/R-TiO₂/Ta₃N₅ because of their small amounts. However, since Ir/R-TiO₂/Ta₃N₅ should selectively adsorb IO₃⁻ and hinder the access of I⁻, as does R-TiO₂ alone, this effect should enhance the O₂ evolution from Ir/R-TiO₂/Ta₃N₅ in an aqueous solution containing both IO_3^- and I^- . More specifically, it is likely that O_2 evolution occurs at the boundary region among R-TiO₂, Ta₃N₅, and the reactant solution. In this region, adsorption of I⁻ anions onto Ta₃N₅ (in other words, scavenging photogenerated holes by the adsorbed I^- anions) becomes weaker, thereby allowing for O₂ evolution. Interestingly, a similarly prepared sample, TiO₂-anatase modified Ta_3N_5 (A-TiO₂/Ta₃N₅), did not work as effectively as R-TiO₂/ Ta₃N₅ (entry 6). According to the previous report, A-TiO₂ does not have the aforementioned unique adsorption property observed in R-TiO₂.⁹ This result further supports the idea that the relatively high activity of Ir/R-TiO₂/Ta₃N₅ is attributed to the R-TiO₂ modifier on Ta_3N_5 , which hinders the access of I⁻ anions.

TEM observation of Ir/R-TiO₂/Ta₃N₅ showed that the Ir particles (i.e., reduction sites) were loaded mainly on the R-TiO₂ component (Figure 2d). The existence of Ir and R-TiO₂ on Ta₃N₅ was also confirmed by energy dispersive X-ray (EDX) analysis (Figure 2e). To verify the function of the Ir particles on $R-TiO_2$, we examined photocatalytic O2 evolution on R-TiO2 (purchased from Kanto Chemical Co., Inc.) loaded with and without Ir in a solution containing IO₃⁻ under UV irradiation ($\lambda > 300$ nm). The initial rate of O_2 evolution on Ir/R-TiO₂ was about three times that of R-TiO₂ alone. This indicates that Ir particles loaded on R-TiO₂ also function as active sites for the reduction of IO_3^{-} , similar to the Ir particles on Ta₃N₅ described above. From these results, we conclude that the pathway of electrons and holes is as follows. When Ir/R-TiO₂/Ta₃N₅ is irradiated by visible light, electrons and holes are generated in the conduction and valence bands of Ta₃N₅, respectively. The electrons are injected into R-TiO2, driven by the difference in their conduction band edge positions (Ta₃N₅: -0.4 V, R-TiO₂: 0 V vs NHE at pH 0), and reduce IO_3^- at Ir particles on the R-TiO₂. On the other hand, the holes oxidize water to produce O_2 on the surface of Ta_3N_5 . The recombination of electrons and holes in the Ta₃N₅ is suppressed by electron transfer from Ta₃N₅ to R-TiO₂, leading to the enhanced activity of Ir/R-TiO₂/Ta₃N₅ shown in Table 1.

Finally, visible-light-driven overall water splitting was attempted by combining $Pt/ZrO_2/TaON$ as an H_2 evolution photocatalyst with the newly developed Ir/R-TiO₂/Ta₃N₅ as an O₂-evolution photocatalyst in an aqueous NaI solution.¹⁸ As shown in Figure 3, simultaneous evolution of H2 and O2 was observed. At the initial stage of the reaction, IO₃⁻ was accumulated as a result of the oxidation of I⁻ on Pt/ZrO₂/TaON, and O₂ evolution began to occur on Ir/R-TiO₂/ Ta_3N_5 . As the reaction proceeded, the accumulated IO_3^{-} suppressed H_2 evolution by Pt/ZrO₂/TaON. At the steady state, the rates of H_2 and O_2 evolution became relatively stable, although the H_2/O_2 ratio in the products was slightly larger than that expected from the stoichiometry ($H_2/O_2 = 2$). Empirically, such nonstoichiometric H_2 and O_2 evolution in Z-scheme water splitting using an IO_3^{-}/I^{-} redox pair tends to be observed when competitive oxidation of I- on an O₂ evolution photocatalyst is significant (i.e., the reactivity of the valence band holes in the O2 evolution photocatalyst with I⁻ is high and/or the concentration of NaI is high).^{9,14b} Control experiments showed no simultaneous evolution of H₂ and O₂ when any one component of the system (Pt/ZrO₂/TaON, Ir/R-TiO₂/Ta₃N₅, NaI,

Figure 3. Time course of photocatalytic evolution of H₂ and O₂ using a mixture of Pt/ZrO₂/TaON and Ir/R-TiO₂/Ta₃N₅ suspended in aqueous NaI solution under visible light ($\lambda > 420$ nm). Reaction conditions: catalyst, 0.05 g each; aqueous NaI solution, 250 mL (0.1 mM); light source, xenon lamp (300 W) fitted with a cold mirror (CM-1) and a cutoff filter; reaction vessel, Pyrex side-irradiation type. Pt (1 wt %) and Ir (5 wt %) were deposited on ZrO₂/TaON and R-TiO₂/Ta₃N₅, respectively, by impregnation.

and the light source) was absent. In addition, the total production of H_2 and O_2 after 60 h was ca. 200 μ mol, substantially larger than the amount of NaI employed as a shuttle redox mediator (25 µmol) for the reaction. These results clearly indicate that the overall water splitting proceeded photocatalytically by a redox cycle between IO₃⁻ and I⁻ as follows: (I) water reduction to H₂ and I⁻ oxidation to IO₃⁻ over Pt/ZrO₂/TaON and (II) IO₃⁻ reduction to I⁻ and water oxidation to O_2 over Ir/R-Ti O_2/Ta_3N_5 . It is known that iodine species (e.g., iodide, iodate, and triiodide) undergo chemical changes such as comproportionation and disproportionation. However, we did not observe them in the present system, due primarily to the relatively low optimal NaI concentration (0.1 mM) and the low reactivity of this system. Although we confirmed the reproducibility of the simultaneous H_2 and O_2 evolution in the case of Ir/R-Ti O_2/Ta_3N_5 as an O₂ evolution photocatalyst, the reproducibility of O₂ evolution was poor when Ir/Ta₃N₅ (without R-TiO₂) was used. Furthermore, unmodified Ta₃N₅ did not function as an O₂ evolution photocatalyst in the above-mentioned Z-scheme water-splitting system. Therefore, modification of the Ta3N5 surface with both Ir cocatalyst and R-TiO₂ nanoparticles was required to achieve Z-scheme overall water splitting. We expect that the overall efficiency of this catalytic system will be improved by further refinement of the catalyst preparation, and this possibility is currently under investigation.

It is also noted that the rates of H_2 and O_2 evolution decreased slightly with time, but recovered after evacuation of the reaction system, suggesting that H_2 – O_2 recombination, which is thermodynamically favorable, takes place during the reaction. This was confirmed by testing the water formation reaction from a mixture of H_2 and O_2 in the dark using Pt/ZrO₂/TaON and Ir/R-TiO₂/ Ta₃N₅ catalysts. As shown in Figure S5 (Supporting Information), the amounts of H_2 and O_2 in a closed-gas circulation system both decreased with time, indicating that water formation (eq 5 below) occurs on a mixture of Pt/ZrO₂/TaON and Ir/R-TiO₂/Ta₃N₅.

$$2H_2 + O_2 \rightarrow 2H_2O \tag{5}$$

It is thus clear that, during photocatalytic water splitting, this undesirable reaction occurs, thereby reducing the detected rates of H_2 and O_2 evolution. The suppression of the H_2-O_2 recombination is another important subject to realize more efficient water splitting in this reaction system.

⁽¹⁸⁾ UV-visible diffuse reflectance spectra of ZrO₂/TaON and R-TiO₂/Ta₃N₅ are included in the Supporting Information (Figure S4). More detailed results of the characterization of ZrO₂/TaON modified with or without Pt have been reported elsewhere (see ref 14).

In conclusion, Ta₃N₅ with a band gap of 2.1 eV was successfully applied as an O₂ evolution photocatalyst in a two-step watersplitting system with an IO₃⁻/I⁻ shuttle redox mediator under visible light ($\lambda > 420$ nm). This was accomplished after proper modification to offer catalytic active sites for the reduction of IO₃⁻ ions and hinder undesirable I⁻ adsorption. Previous research on water splitting photocatalysts has been directed mainly toward the development of photocatalysts which minimize electron-hole recombination and maximize absorption capability.¹ As a result, surface modification of photocatalysts to improve their selectivity for two-step water splitting has been neglected. The present result thus expands the possibility of using various photocatalysts (including (oxy)nitrides) in two-step water-splitting systems, by employing a suitable modification method to construct reaction sites and control the adsorption of redox reagents. Acknowledgment. This work was supported by the Research and Development in a New Interdisciplinary Field Based on Nanotechnology and Materials Science program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and The KAITEKI Institute, Inc.

Supporting Information Available: Experimental details, table of photocatalytic activities on Ta_3N_5 loaded with various cocatalysts, XPS spectra for Ir 4f, SEM and TEM images of Ir/Ta₃N₅, XRD pattern for R-TiO₂/Ta₃N₅, UV-visible diffuse reflectance spectra for ZrO₂/TaON and R-TiO₂/Ta₃N₅, and time course of water formation in the dark over Pt/ZrO₂/TaON and Ir/R-TiO₂/Ta₃N₅ suspended in an aqueous NaI solution. This material is available free of charge via the Internet at http://pubs.acs.org.