

Supplementary Figure 1. XRD patterns of $BiVO_4$ (black) and N_2 -treated $BiVO_4$ (red). The (hkl) indices are based on JCPDF 83-1699 (Space group: I 2/b). No detectable changes were observed by comparing these patterns probably because the peaks generated by thin nanoporous $BiVO_4$ films could not provide sufficient resolution. The peaks from FTO are indicated by black circles.

Supplementary Figure 2. Raman spectra of BiVO₄ (black) and N₂-treated BiVO₄ (red). N₂-treated BiVO₄ shows significant broadening of various V-O stretching and VO₄³⁻ deformation modes, suggesting that N₂ treatment indeed affected the local coordination of V in the bulk BiVO₄ sample (v_s : symmetric stretching mode, v_{as} : asymmetric stretching mode, δ_s : symmetric deformation mode, δ_{as} : asymmetric deformation mode).

Supplementary Figure 3. Mott Schottky plots of $BiVO_4$ (black) and N_2 -treated $BiVO_4$ (red) measured in a 0.5 M phosphate buffer (pH 7.2) at two different frequencies, 0.5 kHz and 1 kHz.

Supplementary Figure 4. Zeta potential measurement of BiVO₄ (black) and N₂-treated BiVO₄ (red) in a 0.5 M phosphate buffer solution (pH 7.2). The pH_{PZZP} of BiVO₄ and N₂-treated BiVO₄ could not be directly measured because BiVO₄ is not chemically stable near its pH_{PZZP}. However, zeta potentials at pH 7.2 solution could be used to compare the pH_{PZZP}s of BiVO₄ and N₂-treated BiVO₄. N₂-treated BiVO₄ has a more positive zeta potential than BiVO₄ at pH 7.2, which means that pH_{PZZP} of N₂-treated BiVO₄ is higher than that of BiVO₄.

Supplementary Figure 5. (a) Projected density of states for N-doped BiVO₄ (12.5% O replaced with N) obtained from DFT-PBE calculations; total density of states for up (black solid) and down (black dashed) spins as well as spin up O 2p (red), V 3d (blue) and N 2p (green) states. The reference energy was set at the top of the valence band of N-doped BiVO₄. (b) Band structures of pristine and N-doped BiVO₄ (12.5% O replaced with N), obtained from DFT-PBE calculations, and aligned using the position of the 3s energy levels of V atoms that are not first neighbors of the defects.

Supplementary Figure 6. (a) Projected density of states for N-doped BiVO₄ (12.5% O replaced with N followed by artificially adding an electron per nitrogen to compensate for the excess holes from N substitution) obtained from DFT-PBE calculations; total density of states (black solid) as well as O 2p (red), V 3d (blue) and N 2p (green) states (spin up and down states are identical). The reference energy was set at the top of the valence band of N-doped BiVO₄. (b) Band structures of pristine and N-doped BiVO₄ (12.5% O replaced with N), obtained from DFT-PBE calculations, and aligned using the position of the 3s energy levels of V atoms that are not first neighbors of the defects.

Supplementary Figure 7. (a) Projected density of states of BiVO₄ with 6% O vacancy obtained within DFT-PBE. The reference energy was set at the Fermi level of defective BiVO₄. (b) Band structures of pristine (blue dots) BiVO₄ and BiVO₄ with 6% O vacancy (black line) obtained at the PBE level of theory; the two band structures were aligned using the position of the 3s energy levels of V atoms away from the O vacancies. (c) Spin density (yellow iso-surfaces at 0.0049 e bohr⁻³) of the isolated band at the Γ point; green, silver and red spheres represent V, Bi and O atoms, respectively.

Supplementary Figure 8. (a) Projected density of states of BiVO₄ with 6% O vacancy obtained within DFT-PBE+U. (b) Band structures of pristine BiVO₄ (black dots) and BiVO₄ with 6% O vacancy at the PBE+U level of theory for spin up (red) and down (green). The two band structures were aligned using the position of the 3s energy levels of V atoms away from the O vacancies. The reference energy was set at the Fermi level of defective BiVO₄. (c) and (d) Spin density (yellow iso-surfaces at 0.0049 e bohr⁻³) of the two isolated bands at the Γ point; V (green), Bi (silver), and O (red) atoms.

Supplementary Figure 9. Density of states of pristine $BiVO_4$ (black) and $BiVO_4$ with charge-balanced N doping (9% O replaced with 6% N and 3% O vacancy) (red) at the PBE level of theory.

Supplementary Figure 10. (a) Projected density of states of charge-balanced N-doped $BiVO_4$ with additional O vacancies (6% N and 6% O vacancies). The reference energy is set at the Fermi level of the doped system, obtained within DFT-PBE.

Supplementary Figure 11. Mott-Schottky plots of N₂-treated BiVO₄ (red) and H₂-treated BiVO₄ (blue) at (a) 0.5 kHz and (b) 1 kHz measured in a 0.5 M phosphate buffer (pH 7.2). (c) UV-Vis absorption spectra, (d) J-V plots for sulfite oxidation, (e) IPCE, and (f) APCE of N₂-treated BiVO₄ (red) and H₂treated BiVO₄ (blue). *J-V* plots were obtained in a 0.5 M phosphate buffer (pH 7.2) containing 1 M Na_2SO_3 under AM 1.5 G, 100 mW cm⁻² illumination (scan rate, 10 mV s⁻¹). IPCE and APCE were obtained at 0.6 V vs. RHE in the same electrolyte. H2-treated BiVO4 used in these experiments was prepared by annealing BiVO₄ at 350 °C for 2 h while flowing H₂, which generated oxygen vacancies in the BiVO₄ lattice. The comparable slopes of the Mott-Schottky plots of N₂-treated and H₂-treated samples show that they have comparable concentrations of O-vacancies serving as donors. The UV-Vis spectrum of H₂-treated BiVO₄ shows a significant absorption before the absorption edge ($\lambda > 510$ nm) most likely due to the presence of irregular O defects generating interband states in the bandgap region. However, IPCE and APCE plots of H_2 -treated BiVO₄ confirm that the bandgap of H_2 -treated samples is the same as untreated BiVO₄. The APCE comparison of N₂-treated and H₂-treated samples shows that although they have the same amount of O vacancies, the electron-hole separation of N2-treated samples is more enhanced at 470 nm $\leq \lambda < 510$ nm. (The photocurrent onset of H₂-treated samples is 510 nm, so APCE at $\lambda \ge 510$ nm is not considered.) This suggests that N₂-treated samples have other factors that additionally enhance electron-hole separation. This agrees well with the calculation result that N incorporation increases the mobility of polarons and can further enhance electron transport properties and electron-hole separation. This explanation also agrees well with the results discussed in Figure S12.

Supplementary Figure 12. Comparison of photocurrents generated from front-side illumination (blue) and back-side illumination (red) for (a) BiVO₄, (b) H₂-treated BiVO₄, and N₂-treated BiVO₄ in a 0.5 M phosphate buffer (pH 7.2) containing 1 M Na₂SO₃ under AM 1.5 G, 100 mW cm⁻² illumination (scan rate, 10 mV s⁻¹). Comparing photocurrents generated from front-side illumination (J_{back}) and back-side illumination (J_{back}) of BiVO₄ provides information as to whether electron transport or hole transport limits the charge transport and electron-hole separation. An indication of poor electron transport being a limiting factor for electron-hole separation in BiVO₄ is demonstrated by $J_{front}/J_{back} < 1$ (0.54 at 0.6 V vs. The H₂-treated BiVO₄ shows an increase in both J_{front} and J_{back} but J_{front} increases more RHE). significantly, making $J_{\text{front}}/J_{\text{back}} = 0.62$. This is because O vacancies generated by H₂ treatment increase the majority carrier density and improve electron transport. The N2-treated BiVO4 also increases both J_{front} and J_{back} due to enhanced photon absorption. If N incorporation improves only the photon absorption, J_{front}/J_{back} should be similar to that of H₂-treated samples since they have similar carrier densities and, therefore, they must have similar electron transport properties. However, the N2-treated sample shows an increase in $J_{\text{front}}/J_{\text{back}}$ to 0.69, suggesting that N-incorporation additionally improves electron transport property via the mobility increase.

Supplementary Figure 13. (a) XPS comparison of N₂-treated BiVO₄/FeOOH/NiOOH before (black) and after (blue) 30 hours of photooxidation of water at 0.6 V vs. RHE in a 0.5 M phosphate buffer (pH 7.2) under AM 1.5G, 100 mW cm⁻² illumination. The result shows a significant reduction in Ni 2p and Fe 2p peaks. The N 1s peak from N_2 -treated BiVO₄ remained intact suggesting that N in the BiVO₄ is stable. (The N 1s peak after water oxidation looks slightly more enhanced due to the loss of the OEC layers covering the N₂-treated BiVO₄ surface.) (b) UV-Vis spectra and (c) IPCE plots of N₂-treated BiVO₄/FeOOH/NiOOH before (black) and after (blue) 30 hours of photooxidation of water. When the OEC coating is removed during water oxidation, the resulting accumulation of photogenerated holes at the N_2 -treated BiVO₄ surface is expected to result in the dissolution loss of BiVO₄ by the photooxidation of BiVO₄. This is confirmed by the increase in transmittance and the decrease in IPCE in the wavelength region allowing for the bandgap transition in N2-treated BiVO4/OECs after water oxidation. However, the IPCE plot of N₂-treated BiVO₄/FeOOH/NiOOH still shows an earlier onset for bandgap transition confirming that N incorporated into the BiVO₄ lattice is stable under anodic bias and illumination. (It is more accurate to use the IPCE data than UV-Vis spectra to check the presence of N decreasing the bandgap of $BiVO_4$ because the tailing of the UV-Vis spectra below the bandgap can be very sensitive to the various defects present on the BiVO₄ surface and can change even when the bandgap remains the same.)

Supplementary Table 1. J_{abs} , ϕ_{sep} (at 0.6 V vs. RHE), and $J_{pec(sulfite)}$ (at 0.6 V vs. RHE) of pristine and N₂-treated BiVO₄. The confidence intervals were determined at the 95% confidence level using measurements on three different samples.

	$\mathbf{J}_{\mathrm{abs}}$	φ _{sep} (at 0.6 V vs. RHE)	J _{pec(sulfite)} (at 0.6 V vs. RHE)
Pristine	$4.44 \pm 0.06 \text{ mA cm}^{-2}$	0.70 ± 0.04	$3.27 \pm 0.31 \text{ mA cm}^{-2}$
N ₂ -treated	$5.30 \pm 0.09 \text{ mA cm}^{-2}$	0.76 ± 0.07	$4.16 \pm 0.41 \text{ mA cm}^{-2}$

Supplementary Table 2. Summary of major findings in different doping cases.

Composition	Shift of VBM	Bandgap	Presence of	Polaron formation
	[eV]	[eV]	mid-gap states	
Pristine BiVO ₄	0.0	2.25	No	No
N-doping $(12.5\%)^1$	0.48	1.77	Yes	No
N-doping (12.5%) with extra	0.39	1.86	No	No
electrons added to the system ²				
O vacancy $(6\%)^3$	0	2.25	Yes	Yes
				(small polarons at V)
Charge-balanced N-doping	0.3-0.4	1.85-1.95	No	No
$(6\% \text{ N and } 3\% \text{ O vacancy})^4$				
Charge-balanced N-doping	0.3	1.95	Yes	Yes
with additional oxygen				(small polarons at V)
vacancies (6% N and 6% O				_
vacancy) ⁵				

¹ Created by replacing 12.5% neutral O atoms with neutral N atoms.

² Created by replacing 12.5% neutral O atoms with neutral N atoms, followed by artificially adding one electron per nitrogen to compensate for holes generated by charge imbalanced N substitution.

³ Created by removing 6% neutral O atoms. Two electrons at each O vacancy are spontaneously ionized and localized at V atoms. As a result, the charge state of an O vacancy is q = +2 and two small polarons are formed at V.

⁴ Created by replacing 9% neutral O atoms with 6% neutral N atoms and 3% O vacancy. The electrons generated by O vacancies neutralize the holes generated by N substitution, balancing the charge.

⁵ Created by replacing 9% neutral O atoms with 6% neutral N atoms and 3% O vacancy, followed by additional removal of 3% neutral O atoms. The electrons from 3% O vacancies are used to compensate for the charge change by N substitution and the electrons from the other 3% O vacancies are ionized and localized at V atoms, forming small polarons.

(1)