SrNbO₂N as a Water-Splitting Photoanode with a Wide Visible Light Absorption Band

Kazuhiko Maeda,^{1,†} Masanobu Higashi,² Bhavin Siritanaratkul,¹ Ryu Abe,² and Kazunari Domen^{1,*}

¹ Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. ² Catalysis Research Center, Hokkaido University, North 21, West 10, Sapporo 001-0021, Japan. [†] Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.

*To whom corresponding author should be addressed.

TEL: +81-3-5841-1148, FAX: +81-3-5841-8838, Email: domen@chemsys.t.u-tokyo.ac.jp

Supporting Information

Preparation of SrNbO₂N Particles

Oxide precursors were prepared by the polymerized complex method. In a typical synthesis, NbCl₅ (High Purity Chemicals, 99.9%) and SrCO₃ (Kanto Chemical, 99.9%) were dissolved in a stoichiometric ratio in methanol. Citric acid (Wako Pure Chemicals, 98.0%) and ethylene glycol (Kanto Chemical, 99.5%) were added, and the solution was kept at 473 K overnight to promote polymerization. After becoming a yellow resin, the mixture was pyrolyzed at 623 K, followed by calcination in air at 923 K and 1073 K for 2 h each, with intermediate grinding. The obtained white oxide powder was then nitrided under NH₃ flow (250 mL·min⁻¹) for 15 h at 1123 K. The production of SrNbO₂N was confirmed by X-ray diffraction analysis.

Preparation of SrNbO₂N/FTO Electrodes

The electrodes were prepared by electrophoretic deposition in an acetone solution (50 mL) containing SrNbO₂N powder (40 mg) and iodine (10 mg). Two parallel FTO electrodes were immersed in the solution with a 10–15 mm separation, and a 10 V bias was applied between the two for 3 min under potentiostat control. The SrNbO₂N-coated area was fixed at either 1 cm \times 3 cm or ca. 1.5 cm \times 4 cm. The as-prepared electrode was once calcined at 673 K for 0.5 h, dropped with 10 mM of NbCl₅ in methanol solution (25 µL for 1 \times 3 cm² electrode; 50 µL for 1.5 \times 4 cm² electrode), and then dried. After this procedure was repeated 6 times, the electrode was heated in NH₃ flow (20 mL·min⁻¹) at 753 K for 0.5 h.

Preparation of Colloidal IrO₂ and Adsorption

Colloidal IrO₂ was deposited on the surface of the prepared electrodes as a promoter for water oxidation. A colloidal IrO₂ aqueous solution was prepared by hydrolysis of Na₂IrCl₆.^{S1,2} 0.0080 g of Na₂IrCl₆ was dissolved in 50 mL H₂O, and the pH of the solution was adjusted to 11–12 with aqueous NaOH solution (1 M). The solution was heated at 353 K for 0.5 h, and then cooled to room temperature by immersion in an ice-water bath. The pH of the cooled solution was then adjusted slowly to 9 with aqueous HNO₃ solution. Subsequent heating at 353 K for 0.5 h resulted in a deep blue solution containing colloidal IrO₂, which was diluted to 50 mL in total volume.

The adsorption of the as-prepared colloidal IrO_2 was conducted by soaking the $SrNbO_2N$ electrode in a diluted colloidal solution (ca. 15 vol.%) overnight, followed by rinsing with water prior to photoelectrochemical measurements.

Photoelectrochemical Measurements

Photoelectrochemical measurements were carried out with a potentiostat (HSV-110, Hokuto Denko) and an electrochemical cell at room temperature. The cell was made of Pyrex glass, and was a three-electrode-type system using Pt wire and an Ag/AgCl electrode as the counter and reference electrodes, respectively. A Na₂SO₄ aqueous solution (pH \approx 6) was used as the electrolyte, which was saturated with argon gas prior to the electrochemical measurements. The light source was a xenon lamp (300 W) fitted with a cutoff filter to irradiate visible light ($\lambda > 420$ nm). The potential of the photoelectrode is reported against the reversible hydrogen electrode (RHE):

 $E_{\text{RHE}} = E_{\text{AgCl}} + 0.059 \text{ pH} + E^{\circ}_{\text{AgCl}} (E^{\circ}_{\text{AgCl}} = 0.1976 \text{ V at } 298 \text{ K})$

Evolved H_2 and O_2 gasses were detected by on-line gas chromatography (Agilent MicroGC G3000 with TCD detector and MS-5A column, argon carrier gas). The experimental setup is schematically illustrated in Figure S1.

References

- S1. Harriman, A.; Pickering, I. J.; Thomas, J. M.; Christensen, P. A. J. Chem. Soc., Faraday Trans. 1 1988, 84, 2795.
- S2. Le Paven-Thivet, C.; Ishikawa, A.; Ziani, A.; Le Gendre, L.; Yoshida, M.; Kubota, J.; Tessier, F.; Domen, K. J. Phys. Chem. C 2009, 113, 6156.

Figure S1. A schematic illustration of the experimental setup for photoelectrochemical water splitting and H_2 - O_2 detection by a micro-GC.

Figure S2. SEM images of $SrNbO_2N/FTO$ electrodes (A) before and (B) after post-necking treatment. (C) indicates the cross section image of (B).

Figure S3. (A) XRD patterns and (B) DRS of $SrNbO_2N$ powder before and after post-necking treatment.

Figure S4. Cyclic voltammogram in aqueous 0.1 M Na₂SO₄ solution (pH \approx 6) under intermittent visible light irradiation ($\lambda > 420$ nm) for IrO₂-modified post-necked SrNbO₂N electrode (2.5 cm²). Scan rate: 20 mV·sec⁻¹.

Figure S5. Time course of H_2 evolution from water containing methanol as an electron donor using 1.0 wt% Pt-loaded SrNbO₂N powder under > 300 nm irradiation. Reaction conditions: catalyst, 0.1 g; reactant solution, aqueous methanol solution (10 vol.%, 400 mL); light source, high-pressure mercury lamp (450 W); reaction vessel, inner-irradiation type.

Figure S6. Cyclic voltammogram of (A) IrO_2 -modified post-necked and (B) the as-deposited $SrNbO_2N/FTO$ electrode in the dark condition. Scan rate: 100 mV·sec⁻¹.

Figure S7. Current-voltage curve in aqueous 0.1 M Na₂SO₄ solution (pH \approx 6) under intermittent visible light irradiation ($\lambda > 420$ nm) for IrO₂-modified post-necked SrNbO₂N electrode (2.5 cm²) in a two-electrode configuration with a Pt wire cathode. Scan rate: 20 mV·sec⁻¹.

Figure S8. Current-voltage curve in aqueous 0.1 M Na₂SO₄ solution (pH \approx 6) under intermittent AM1.5 irradiation for IrO₂-modified SrNbO₂N electrode. Scan rate: 20 mV·sec⁻¹.

photoelectrolysis for 120 min at $+1.55$ V vs. RTE ander visible light ($k > +20$ min)					
Entry	Electrode	IrO ₂ loading	Surface atomic ratios ^{<i>a</i>}		
			Sr/Nb	N/Nb	Ir/Nb
1	Before	No	0.20	0.52	-
2	After	No	0.19	0.12	-
3	Before	Yes	0.39	0.52	0.97
4	After	Yes	0.41	0.25	0.92

Table S1. Surface atomic ratios of post-necked SrNbO₂N electrodes before and after photoelectrolysis for 120 min at +1.55 V vs. RHE under visible light ($\lambda > 420$ nm)

^{*a*} Estimated from the corresponding peak areas normalized by Nb peak.

Figure S9. Time courses of O₂ evolution on (A) unmodified and (B) IrO₂-loaded SrNbO₂N under visible light ($\lambda > 420$ nm) from a silver nitrate solution. Reaction conditions: catalyst, 0.1 g (0.2 g La₂O₃ as a buffer); reactant solution, aqueous silver nitrate solution (0.01 M, 100 mL); light source, xenon lamp (300 W) with cutoff filter; reaction vessel, top-irradiation type. The rate of O₂ evolution (especially in IrO₂-loaded sample) decreased gradually with reaction time, due to the photodeposition of metallic Ag particles on the catalyst surface.

Figure S10. XPS spectra for Nb3d and N1s of post-necked $SrNbO_2N$ electrodes with and without modifying IrO_2 colloids. The binding energies determined by XPS were corrected in reference to the Sn 3d peak (486.4 eV) derived from FTO for each sample.

Figure S11. Current-voltage curve in aqueous 0.1 M Na₂SO₄ solution (pH \approx 6) under intermittent visible light irradiation ($\lambda > 420$ nm) for IrO₂-modified SrNbO₂N electrode that was in prior used for photoelectrolysis at 1.55 V vs. RHE for 120 min. Scan rate: 20 mV·sec⁻¹.

Figure S12. Current-time curve in aqueous 0.5 M Na₂SO₄ solution (pH \approx 6) for IrO₂-modified post-necked SrNbO₂N electrodes (6 cm²) at +1.55 V vs. RHE under visible light ($\lambda > 420$ nm).

Figure S13. Time course of gas evolution in photoelectrochemical water splitting using post-necked SrNbO₂N electrodes (6 cm²) modified with colloidal IrO₂ recorded at +1.0 V vs. RHE in aqueous 0.5 M Na₂SO₄ solution (pH \approx 6) under visible light (λ > 420 nm).

Figure S14. Spectral feature of a 300 W Xe lamp fitted with a CM-1 cold mirror and a L42 cutoff filter, further equipped with different cutoff filters of Y50, O58, R62, R66 and R70.

Figure S15. (Left) Current-voltage curves in aqueous 0.5 M Na₂SO₄ solution (pH \approx 6) under intermittent irradiation of monochromatized light ($\lambda = 400$ nm, 12.4 mW·cm⁻²) for IrO₂-modified SrNbO₂N electrodes (6 cm²). Scan rate: 20 mV·sec⁻¹. (Right) A spectrum of the light source used for the current-voltage measurement.