Supporting Information

Synthesis Mechanism of Cationic Surfactant Templating Mesoporous Silica under Acidic Synthesis Process

Shunai Che,^{†,*} Huachun Li,[†] Sunghyun Lim, [‡] Yasuhiro Sakamoto, [§] Osamu Terasaki [§] and Takashi Tatsumi^{‡,#,*}

Department of Chemistry, School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China, Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-10691 Stockholm, Sweden, Division of Materials Science & Chemical Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Yokohama 240-8501, Japan and CREST, JST, Japan.

E-mail : <u>chesa@sjtu.edu.cn</u>; ttatsumi@ynu.ac.jp

† Shanghai Jiao Tong University.

[‡] Yokohama National University.

§ Stockholm University.

CREST, JST, Japan.

Figure S1. Synthesis-space diagram of mesophase structures established by XRD measurements. Each mixture had H_2O/Si molar ratio of 125. The mesoporous materials were synthesized under static condition at 0 °C for 1d.

Figure S2 XRD patterns of the as-synthesized samples synthesized with various conditions shown in Table 1. TEOS/CTEABr (mol) = 13

Sample	Temperature	H ₂ O/HCl	H ₂ O/TEOS	HCl/CTEABr	Product	Unit cell parameter	
Sample	(°C)	(mol)	(mol)	(mol)	mesophases	(A)	
(a)	0	50	100	26	Cubic Pm3n	a = 86.9	
(b)	30	50	100	26	3d-hexagnal P6 ₃ /mmc	a = 47.4, c = 77.1, ($c/a = 1.627$)	
(c)	0	70	100	19	3d-hexagnal P6 ₃ /mmc	a = 49.7, c = 81.7, ($c/a = 1.644$)	
(d)	0	50	50	13	3d-hexagnal P6 ₃ /mmc	a = 46.7, c = 75.7, (c/a = 1.621)	

Table 1. Mesostructures synthesized with different compositions.

Figure S3. SEM images and surface indexes of the mesoporous materials synthesized with various acids. (a1) H_2SO_4 , (a2) surface index of sample (a1), (b1) HCl, (b2) surface index of sample (b1).

Figure S4. HREM images and Fourier diffractograms of the 3d-hexagonal $P6_3/mmc$ mesophase synthesized with H₂SO₄.

Figure S5. N_2 adsorption-desorption isotherms and pore size distributions of calcined mesoporous materials synthesized with different acids. Synthesis composition is the same to Figure S3 and 2.

Figure S6. XRD patterns of as-synthesized materials synthesized by the addition of 1,2,4-TMB at 0 °C for various times.

Synthesis molar composition: 1: 0.13: 5: 125: x TEOS: CTEABr: HCl: H₂O: 1,2,4-TMB. x = (a) 0.065 and (b) 0.130.

Figure S7. XRD patterns of as-synthesized materials synthesized with 1,2,3-TMB addition at 0 °C for various times.

Synthesis molar composition: 1:0.13:5:125:x TEOS: CTEABr: HCl: H_2O : 1,2,3-TMB. x = (a) 0.039 and (b) 0.065.

Figure S8. Si/CTEABr molar ratio of the products shown in Figure S7 (a).

Figure S9. SEM images of the samples shown in Figure S7a.

	C	Unit cell ^b	Surface area ^c	Pore volume ^c	Pore
Sample	Space group	(Á)	S_{BET}/m^2g^{-1}	Vp/cm ³ g ⁻¹	diameter ^c (Å)
	3d-hexagonal P6 ₃ /mmc	<i>a</i> = 49.473 (39.966)			
H ₂ SO ₄ /CTEABr=35.0		<i>c</i> = 80.978 (65.504)	1278	0.581	25.7
		<i>c/a</i> = 1.637 (1.639)			
HC1/CTEABr=32.0	Cubic	a = 92.252 (82.233)	1024	0.510	27.0
Hel/CTEADI-52.0	Pm3n	u = J2.232 (02.233)			
HBr/CTEABr=19.2	2d-hexagonal	a = 52,782,(36,413)	1199	0.592	26.6
	p6mm	<i>u</i> 52.762 (50.415)			
$HNO_{2}/CTEABr=77$	Cubic	<i>a</i> = 91.225	1396	0.794	27.2
11103/C1LADI - 1.1	Ia3d	(69.745)	1570		

 Table 2. Properties of the four type mesoporous materials synthesized with different acids.

^a Samples synthesized with different acids at 0 °C for 1 day. ^b The value inside brackets for unit cell parameter is the value for the materials calcined at 600 °C for 6 h. ^c BET surface area, pore volume and pore size were determined from N_2 adsorption experiments.