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Abstract

Photo-generated charge separation is one of the key factors determining the solar energy
conversion efficiency in photocatalysis and photoelectrocatalysis. Fabrication of phase-junction has
been demonstrated to be an effective strategy to construct the internal electric field for the charge
separation. Phase junction is essentially a heterojunction, but more common in semiconductor-based
photoelectric conversion systems, because most semiconductors exhibit the polymorphous structures.
Due to the similar crystal structure between the two phases, phase junctions are more easily formed.
The application of phase-junction in photocatalysis and photoelectrocatalysis, especially the
anatase-rutile TiO, and a-f GayOs phase-junction are summarized in this Feature Article. The
internal electrical field across the phase junction provides enough driving force for the improved
charge separation, evidenced by the time and spatial resolved characterizations. We conclude with a
summary and perspectives on the design and application of phase-junction in solar energy

conversion systems.
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1. Introduction

Artificial photosynthesis, which converts solar energy into chemical energy, is considered as
one of the most promising strategies for developing clean and sustainable energy in the future.
Storage of solar energy in the form of chemical energy, especially H,, is proposed to be one of the
most ideal approaches, since hydrogen is an excellent energy carrier molecule due to its high specific
enthalpy of combustion. Photocatalytic or photoelectrocatalytic (PEC) splitting of water into H, and
O, has been being extensively studied in the past decades.'® Among the factors affecting the
photocatalytic performances, light absorption, charge separation and reaction kinetics are the three
determining factors. As charge separation is the most complicated and critical factor, it plays the
crucial role in the photocatalytic process.

To increase the charge separation efficiency, many strategies have been developed, such as

. . . . 7-9 . . . 10-12
fabrication of junction structure,”” manipulation of facet exposing,

and loading of
cocatalysts.”*™"> Fabrication of heterojunction is regarded as a general strategy to improve charge
separation in semiconductors.® The phase junction in polymorph semiconductors, which is
essentially a heterojunction, has been first proposed based on the considerably increased
photocatalytic activities in anatase-rutile phase-junction TiO,'°. The phase junction is more common
in semiconductor-based photoelectric conversion systems, since semiconductor always have several
phase structures. And then the phase junction has been demonstrated as an effective strategy to
increase the charge separation and transfer across the different phases.

In this feature article, we begin with a brief review on the progress of applications of the phase

junction strategy in both photocatalysis and photoelectrocatalysis, especially TiO, and Ga,O; phase
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junction. Then we discuss the kinetic mechanism of the phase junction from the viewpoints of time
and spatial resolved characterization, mainly focusing on the anatase-rutile TiO, phase-junction. We
summarize the conclusions and give the perspective remarks of the phase-junction strategy in the
field of solar energy conversion.

2. Applications of phase-junction in photocatalysis and photoelectrocatalysis

As the most studied photocatalyst, TiO, has been extensively studied with different phase
structures, including anatase, brookite, rutile, and TiO,-B.'* A particular interest is also devoted to
the mix-phased TiO,. In the research of environmental photocatalysis, TiO, containing both anatase
and rutile phases always show much higher activity than either pure anatase or rutile TiO,.>>" The
synergism between anatase and rutile particles was claimed to be the reason for the improved
photocatalytic performances. Degussa P25, which is a mixture of rutile and anatase, was always
selected to be a model catalyst for its high activity of photocatalytic H, production for a long time,
although the reason for its good performance is not clear.’

For the first time, phase junction was proposed to be the main reason for the improved
photocatalytic activity of anatase:rutile TiO,.'® Then this strategy is applied to other
semiconductor-based photocatalyst systems in both photocatalysis and photoelectrocatalysis. In this
section, we first review the work on TiO, phase-junction, followed by the work of Ga,Os
phase-junction in photocatalytic water splitting. And then, the application of phase-junction in
photoelectrocatalysis is summarized, and the relation between the photocatalytic and
photoelectrocatalytic performance for the particulate semiconductor-based photoconversion systems
with surface phase-junction structure is discussed.

2.1 Roles of TiO; phase-junction in photocatalytic H, evolution

4
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TiO, has been extensively studied to explore its application in photocatalytic water splitting
owing to its unique physicochemical properties™. Anatase and rutile, with the bandgap of 3.0 and 3.2
eV, are the most widely investigated crystal structure of TiO,. Anatase usually displays higher

activity than rutile in photocatalytic reactions,’®’

such as photodegradation of environmental
pollutants, while rutile is illustrated to be more active for photocatalytic water oxidation and overall
water.*"*! However, as discussed above, the mixed-phase structure TiO, (e.g. Degussa P25 TiO,)

containing both anatase and rutile has received much attention, because they always exhibits higher

photocatalytic activity than either anatase or rutile alone.
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Figure 1. (a) Photocatalytic H, evolution of rutile TiO, loaded with increasing amount of anatase
nanoparticles. (b) HRTEM of the surface phase-junction formed between anatase and rutile.
Reprinted with permission from ref. 16. Copyright 2008 Wiley-VCH.

With UV-Raman to characterize the phase structure of the anatase-rutile mixed-phase TiO,, the
effect of mixed-phase structure of TiO, on the photocatalytic H, evolution reaction was investigated

in detail.'® TiO, samples with different anatase-rutile phase-junction were prepared by thermal
5
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treatment of Ti(OH), in air from 500 °C to 800 °C. The phase compositions both in the bulk and
surface region were estimated from XRD and UV Raman spectra, respectively. A maximum activity
of H, is obtained for TiO, samples calcined at 700-750 °C, where the surface is in a mixed phase of
anatase and rutile. When TiO, completely transformed into rutile with calcination temperature above
800 °C, the photocatalytic activity decreases dramatically. Inspired by these results, the concept of
surface phase-junction formed between anatase and rutile TiO, was proposed for the first time. To
confirm this viewpoint, anatase nanoparticles were deposited onto rutile surface by wet-impregnation
method. As shown in Figure la, the photocatalytic activity increases with the amount of anatase
nanoparticles increasing. However, the activity decreases if anatase is overloaded, because the
surface phase-junction exposed on the surface of TiO, will be reduced by the overloaded anatase.
The perfect phase-junction, clarified by the closely contacted anatase-rutile interface in the HRTEM
images (Figure 1b), is proposed to facilitate charge separation at the surface of TiO,.

Degussa P25, with anatase-rutile mixed-phase structure, is regarded as a benchmark TiO; for its
high photocatalytic activity. The excellent performance of P25 must result from the synergistic effect
between anatase and rutile. The activity can be further improved via an elaborately controlling
thermal treatment, which optimize the anatase—rutile phase-junction structure of P25.** As shown in
Figure 2, the activity of P25 can be enhanced up to 3-5 times in the reactions of photocatalytic
reforming of methanol, propanetriol and glucose. Further increasing the thermal treatment
temperature does not increase the photocatalytic activity, indicating that the crystallization degree is
not the major reason for the considerably enhanced photocatalytic activity of the thermal-treated P25
photocatalysts. Therefore, the optimized anatase-rutile phase-junction obtained from P25 by

elaborately controlling thermal treatment mainly contributes to the enhancement of the activity.

6
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Figure 2. (a) Average H, production in photocatalytic reforming of methanol, propanetriol and
glucose and (b) surface-specific photocatalytic activity for H, evolution in photocatalytic reforming
of methanol on Pt/P25-x%R photocatalysts (where x indicates the rutile content estimated by XRD.
For P25-100%R-a, b, ¢, d photocatalysts, where a, b, ¢ and d indicate different treatment conditions),
the surface areas of P25-x%R photocatalysts are also displayed (dash dot). Reprinted with the
permission from ref. 42. Copyright 2011 Elsevier.

With the realization of the importance of phase-junction, new strategies for controlling
phase-junction have attracted more attention. Additives, such as Na,SO,, NaNOs;, NaHCO3, NazPOy,
Na,Si03, and Na,MoO4 have been found to have the phase controlling ability43 . For example, surface
modification of Na;SQOy is found to restrain the phase transformation of TiO, from anatase to rutile.**
With the amount of SO,4*~ increases from 0 to 3 wt%, the anatase percentage in surface region can
increase from 2% to 75%. Using this method, TiO, with different phase structures can be prepared at
the same temperature, and these catalysts are more comparable. As shown in Figure 3, in comparison
to P25, the as-prepared Ti0,-SO4*~ shows an increase up to 6-fold for photocatalytic H, production
via methanol reforming. The characterization of UV Raman spectroscopy and XRD demonstrates

that the restrained phase transformation of anatase phase by SO,* results in a mixed phase structure
7
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of TiO; even after high temperature calcination. The anatase-rutile phase-junction, together with the

high crystallinity of TiO,, contribute to the excellent photocatalytic activity of H, production.

H, evolution rate

H, evolution rate per

Surface area /m* g™

Molar ratio of

Figure 3. (a) Overall photocatalytic activity of H, evolution. Surface-specific photocatalytic activity
of H, production (b) and CO selectivity (c) of Pt/P25, Pt/P25-H,0-700 and Pt/P25-x%S04>-700
catalysts. The solid line in (b) indicates the surface area of the samples. Reprinted with the
permission from ref. 44. Copyright 2012 Royal Society of Chemistry.

Since the anatase:rutile phase-junction strategy was introduced in photocatalysis, it became a

4346 nanorod

guidance in the preparation of TiO, with different morphology, such as nanoparticles
arrays47, and nanobelts® structures.*>* Besides anatase and rutile phase, other TiO, phases can also

form phase-junction, which could facilitate the photogenerated charge separation.54 For example,

bicrystalline structure consisting of TiO,(B) and anatase exhibited a much higher H, production
8
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activity as compared to P25.°"** The phase junction fabricated with TiO»(B) improve the charge

3363 Nanotubular anatase/rutile/TiO»(B)

separation and enhance the photocatalytic activity.
nanostructures with enhanced interfacial charge separation and transportation displays excellent
photoactivity for the photocatalytic production of hydrogen.®*

2.2 Roles of Ga,0; phase-junction in photocatalytic overall water splitting

With the understanding of the TiO, phase-junction, the phase-junction strategy is used into the
photocatalytic overall water splitting, in which Ga,0O3 phase-junction is well-studied. There are five
polymorph phases of Ga,O3;. Among them, Ga,0O3 with four polymorphs (a-, B-, v-, and €-Ga,0s) has
been utilized in the field of catalysis, making it as a good candidate for phase-junction study.*>”"

The effect of Ga,0; phase-junction was first investigated with o-f phase-junction Ga,Os
prepared at elevated temperatures by phase transformation from a-Ga,O3 to B-Ga,O; phase.”” As
characterized by XRD and UV Raman spectroscopy, the original a-Ga,0O; transforms into 3 phase
upon the calcination temperature increasing from 673 to 1073 K. As shown in Figure 4d, Ga,03
calcined at 863—893 K show much higher activity than the pure phase Ga,O; samples in o (673 to
773 K) or B phase (973 to 1073 K) in photocatalytic overall water splitting.”” Typically, the
photocatalytic activity of Ga,03-863 with surface a-f3 phase-junction, which is higher than that of
the mechanically mixed Ga,0;, increases up to three or seven-fold of pure a-Ga,O; or B-Ga,0;
alone, respectively. The o—f phase junction contributes to the considerable enhancement in the
activity of photocatalytic overall water splitting, as there are no distinct changes in particle size or
surface area among these samples. The a-f phase-junction of Ga,03-863 was investigated by high

resolution transmission electron microscopy (HRTEM). The images in Figure 4a and 4b demonstrate

that the formed (-Ga,O; nanoparticles are sporadically patched on the surface of the large a-Ga,0;

9
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particle, resulting in that both o and 3 phases are exposed on the Ga,Oj; surface. A simplified cartoon
in Figure 4c depicts the a—f3 phase junctions with a lattice mismatch of only 3%, which promote the

charge separation efficiency.

hv
T 1401 2H2° ?2”2*‘02 - Hz

Gas evolved / pmol h™' m

673 773 863 873 883 893 903 973 1073 a+p
Calcination temperature /K ——>

Figure 4. (a) Low-magnification TEM image of Ga,03-863. The inset is the SAED pattern of area A,
indicating that area A contains both o and [ phases. (b) HRTEM image of area B in (a). (c) A
simplified cartoon depicting the o—f3 phase junctions. (d) Specific H, and O, evolution activities
(normalized by specific surface area) of Ga,Os samples prepared at different temperatures. The
notation o+f indicates the mechanically mixed Ga,Os; with a 1:1 ratio of a-Ga,0;:-Ga,0s;.

Reprinted with permission from ref. 73. Copyright 2012 Wiley-VCH.
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28 Figure 5. (a) Normalized transient absorption decays at 850 nm of Ga,Os3 samples excited by a 255
nm laser. (b) Normalized transient absorption decays of average mid-IR absorption of Ga,O3 samples
33 excited at 266 nm. Mott—Schottky curves (c) and XPS valence band spectra (d) of a-Ga,O; and
B-Ga,0s. (e) Illustration of charge transfer across the a—f phase junction. Reprinted with permission
38 from ref. 73. Copyright 2012 Wiley-VCH.

Time-resolved spectroscopy was used to understand the role of a—f§ Ga,O; phase-junction in the
43 photocatalytic reaction. The Ga,03-863 with a—f3 phase-junction shows an ultrafast transfer at
45 approximately 3 ps (Figure 5a), which is faster than recombination (>1000 ps) and trap processes
48 (14-32 ps) in Ga,0;. On the other hand, for Ga,03-863 with a—f3 phase-junction, the lifetime of the
50 long-lived electrons is much longer than that in either a-Ga,Os3 or B-Ga,Os in the microsecond
time-scale (Figure 5b). The increased long-lived electrons most likely contribute to the enhancement
55 in the photocatalytic activity.
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Figure 6. HRTEM images (a-e) of y-Ga,0s3, y/B-Ga,03-10%, v/B-Gax03-50%, y/B-Ga,03-80%, and
B-Ga,0; samples (the areas scaled out by circular and square symbols indicate the disordered
structure). (f) Photocatalytic overall water splitting activities of Ga,Os photocatalysts. Reprinted with
permission from Ref. 74. Copyright (2015) American Chemical Society.

The effect of other Ga,O; phase-junction is also investigated, besides the o—f Ga,O;
phase-junction. Ga,O3 photocatalysts with y-f3 phase-junction was synthesized by calcining y-Ga,0s
at 823 K for different times (0.75, 5, 11, and 24 h) in air.”* As shown in Figure 6f, all the Ga,0;
samples can split water stoichiometrically into H, and O,. However, opposite to that of the o-
phase-junction Ga,0; system, the y-f phase-junction Ga,O3; with a small amount of B phase shows
the lowest activity. Characterization of the HRTEM images (Figure 6a-e¢) shows that much more

12
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disordered structure exists between the y and § phases in the y/B-Ga,03-10% photocatalyst due to the
defective spinel structure of y phase. The decrease of photocatalytic activity in the y/B-Ga,03-10%
photocatalyst is because that the disordered structure serves as charge recombination centers,
revealed by the spectroscopic characterization and theoretical calculations. Based on the results of
o-f and y-p Ga,O3 phase-junction, it is demonstrated that the interfacial structure between two
phases is decisive for the efficiency of charge separation. To boost photocatalytic reactions, the
structure of the phase-junction should not to be disordered or defective.
2.3 Roles of phase-junction in photoelectrochemical water splitting

On the basis of the application of phase-junction in photocatalysis, its role in
photoelectrocatalytic (PEC) reactions is also widely studied.”" > The Ga,Os particles with a-f
phase-junction and TiO, particles with anatase-rutile phase-junction were used in the
photoelectrochemical water splitting.76 The film electrodes were fabricated by electrophoretic
deposition in an acetone solution containing Ga;Os or TiO, powder. For Ga,Os samples, all the
electrodes show increasing photocurrent densities during the potential scanning from —1.2 to 1.2 V
versus SCE. The photocurrent density of the 3-Ga,O; electrode (Figure 7e) is almost 3 times as high
as that of a-Ga,0Os; electrode (Figure 7a). Opposite to the improved photocatalytic activity by the o-8
phase-junction Ga,0s, all Ga,0; electrodes with a-f phase-junction show decreased photocurrent
density. Among all the electrodes, the Ga;03-863 electrode shows the lowest photocurrent density
(Figure 7b). The similar negative effect of phase-junction on PEC performance is observed in TiO,
electrodes with anatase-rutile phase-junction. The negative effect on PEC performance is mainly due
to the increased charge recombination between semiconductor particles by the surface phase-junction,

as indicated in Figure 7f. In principle, the phase junction can promote charge separation in the

13
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particle regardless of its application in PC or PEC reactions. But there is severe interfacial charge
recombination in the PEC reaction, since the photoexcited charges have to transport across

semiconductor particles to reach a conducting substrate or electrode surface.
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Figure 7. Photocurrent—potential curves (a-¢) of the Ga,O; electrodes with a-f phase-junction. The
inserted cartoon images indicate the phase composition of Ga,O3; samples. The blue and red particle
represents o and P phase. (f) A scheme of the role of a-f Ga,0; phase-junction in PC and PEC
performance. Reprinted with permission from Ref. 76. Copyright (2015) American Chemical

Society.
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Figure 8. Schematic diagrams of the fabrication strategy for TiO; films with tunable phase structures
using a direct current reactive magnetron sputtering technique followed by rapid thermal annealing
(RTA) treatment. (a) Pure phase films of TiO,-A and TiO,-R were prepared by RTA treatment of the
precursor films deposited at a fixed O, partial pressure of 12% and 0%, respectively. (b) The
TiO,-AR film was prepared by RTA treatment of the precursor film obtained by gradually adjusting
the O, partial pressure from 12% to 0%. (c¢) The TiO,-dAR film was prepared by RTA treatment of
the precursor film with an internal and external layer deposited at a fixed O, partial pressure of 12%
and 0% O, partial, respectively. Reprinted with the permission from ref. 77. Copyright 2016 Royal
Society of Chemistry.

To utilize the phase junction strategy in PEC, the effects of the phase configuration and
interface structure across phase junctions were studied with anatase-rutile TiO, films in detail. The
anatase-rutile TiO, films were fabricated using a direct current reactive magnetron sputtering

technique followed by rapid thermal annealing (RTA) treatment (Figure 8). Firstly, the effect of
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phase configuration were investigated with three samples, type A, B and C with random phase
alignment (deposited at 0.3% O,), with forward phase alignments (the TiO,-dAR electrode), and
with reverse phase alignments (the TiO,-RA electrode), respectively. The photocurrent—potential
curves of these three TiO; electrodes shows that the photocurrent densities are in the order of type B >
type A > type C at 0.8 Vrue (Figure 9b). On the other hand, in terms of the effect of the
phase-junction on onset potential, the TiO, electrode in type B phase alignment configuration
exhibits the lowest Vst 0f ca. 0.15 Vryg, while the TiO; electrode in type C and A phase alignment
configuration displays the largest onset potential of ca. 0.48 Vryr and a moderate onset potential of
ca. 0.27 Vppug, respectively. Secondly, the effect of interface structure of the phase-junction was
studied further with the type B phase alignment configuration. As shown in Figure 9c, the TiO,-AR
electrode prepared by gradually adjusting the O, partial pressure exhibits a photocurrent density of ca.
0.63 mA cm? at 1.23 VRrue, which is much higher than 0.15 mA cm™ of the TiO,-dAR electrode.
The photocurrent density of TiO;-AR electrode is 3 and 9 times those obtained for the TiO,-A and
TiO,-R electrodes, respectively. Furthermore, the onset potential of TiO,-AR electrode is negatively
shifted to ca. 0.15 Vguge. TiO2-AR and TiO,-dAR electrodes show dramatic differences in PEC,
although they are in the same anatase/rutile phase alignment (Figure 8b and 8c). Revealed by
transient absorption (TA) spectroscopy, TiO,-AR also shows higher yields of long-lived holes under
illumination than that of TiO,-dAR, indicating that the phase junction prepared by the gradual
deposition method facilitates charge separation and transfer (Figure 9d). These results demonstrate
that the appropriate phase alignment and interface structure of a phase-junction is vitally important in
the utilization of phase-junction in PEC system. This work demonstrates directly the great potential

of phase-junction for efficient charge separation in photoelectrochemical water splitting.
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Figure 9. (a) Schematic diagrams showing the different configuration of the anatase-rutile
phase-junction. Type A, Type B and type C are the TiO, electrodes with random phase alignment
(deposited at 0.3% O), with forward phase alignments (the TiO,-dAR electrode), and with reverse
phase alignments (the TiO,-RA electrode), respectively. (b) Photocurrent—potential curves of TiO,
electrodes with type A (red), type B (green) and type C (blue) phase alignments.
Photocurrent—potential curves (¢) and transient absorption decay profiles (d) of TiO,-dAR (red) and
TiO,-AR (green) electrodes. Reprinted with the permission from ref. 77. Copyright 2016 Royal
Society of Chemistry.

3. Charge separation promoted by phase-junction
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The phase-junction strategy has been successfully applied in both photocatalytic and
photoelectrochemical water splitting, as summarized above. The phase-junction can increase charge
separation and then prolong charge lifetimes, resulting in the improved photoactivity. To confirm the
charge separation, many researchers are devoted to investigate the thermodynamical band alignment
both theoretically and experimentally. On the other hand, the charge separation process and the
distribution of the long-lived charges are characterized by time and spatial resolved techniques
directly.

3.1 Band alignment

Rutile  Anatase Rutile Anatase Rutile  Anatase
f — V
—x —;_/}7 —_—
3.2eV 3 06V
.Oe
3.0eV 3.0eV 396V 3.2eV
A 4
me ~ A .
Type I : Staggered Type 11 : Staggered Type III : Included
Rutile Anatase Rutile  Anatase
3 X rm r 3
™
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v v ka
Type IV : VB Aligned  Type V : CB Aligned

Figure 10. Schematic illustrations of five possible band alignments between rutile and anatase.

Reprinted with the permission from ref. 80. Copyright 2015 Nature Publishing Group.

18

ACS Paragon Plus Environment

Page 18 of 41


http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.8b06039&iName=master.img-036.jpg&w=439&h=310

Page 19 of 41

oNOYTULT D WN =

The Journal of Physical Chemistry

The band alignment between the different phases of the phase-junction determines the
interfacial charge transfer directions thermodynamically, then the charge separation efficiencies. The
bandgaps of different phases are quite similar due to the same chemical composition, which makes it
hard to identify the positions of the conduction bands (CB) and valence bands (VB) of different
phases. Moreover, the band alignment is very sensitive to the interfacial structure, the gas
atmosphere or the electrolyte, etc. Thus, many researchers devoted to clarify the band alignment
theoretically or experimentally.gl'93

The band alignment between anatase and rutile TiO, has been extensively studied. In summary,
five possible band alignments of anatase-rutile phase-junction have been proposed for the relative
position of CB and VB levels of TiO,, as shown in Figure 10.** The flat band potentials of anatase
and rutile single crystals were measured with electrochemical measurements, and it is reported that
the flat band potential of anatase is 0.2 eV above that of rutile,* indicating the VB are aligned (type
IV in Figure 10). The type IV band alignment, with higher CB of anatase and similar VB of
anatase and rutile, is also supported by the calculation results of Kang et al** and experimental
results.”**> The work function of the valence band was studied by the photoemission measurement,
and it is found that the work function of rutile VB is 0.2 eV lower than that of anatase,88
demonstrating that the CB are aligned (type V in Figure 10). The staggered band alignment, which
promotes charge separation efficiently, is also proposed.” The first staggered type is with both of the
CB and VB of anatase above those of rutile (type I in Figure 10),% and conversely the second type is

81,8384 Scanlon

with both of the CB and VB of rutile above those of anatase (type Il in Figure 10).
et al.¥ proposed the type II staggered band alignment from theoretical calculations, and they further

performed X-ray photoemission spectroscopy (XPS) measurement of nanoparticulate structured
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rutile-anatase bilayer, demonstrating the type II band alignment of 0.4 eV exists between anatase and
rutile with rutile possessing the higher conduction band minimum, as shown in Figure 11. The
included alignment (type III in Figure 10)*® was also proposed based on the characterization results

of electron paramagnetic resonance (EPR) spectroscopy.
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Figure 11. Band alignment of anatase-rutile phase-junction from XPS and QM/MM. (a) Graphic of
the hybrid QM/MM cluster used for rutile in the positive charge state. (b) Schematic illustration of
the QM/MM alignment of rutile and anatase TiO,. (c) Ti 2ps; spectra taken from phase-junction
composite particles with rutile to anatase ratios of 1:1 (top) and 2:1 (middle) and 1:2 (bottom). (d)
Schematic illustration of the XPS alignment between rutile and anatase. Reprinted with the

permission from ref. 84. Copyright 2013 Nature Publishing Group.
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In the theoretical calculation on the atomic structure of anatase/rutile phase-junction, a set of
novel theoretical methods were used by Liu et al’l 7% They proposed an ordered three-phase
junction, a layer-by-layer “T-shaped” anatase/TiO,-Il/rutile junction. Although the intermediate
TiO,-II phase is only a few atomic layers thick, it is critical to alleviate the interfacial strain of
anatase/rutile junction. The three-phase junction is claimed to be a single-way valve allowing the
photoinduced charge transfer but frustrating the charge flow in the opposite direction.
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Figure 12. (a) The electronic potential profile for the a-B Ga,O; junction. (b) The schematic
illustration of the band-offset in a-3 Ga,O; phase-junction. Reprinted with the permission from ref.
100. Copyright 2014 Royal Society of Chemistry.

Other band alignments, including TiO,-B/anatase and o/f Ga,0O; phase-junction, have also been
investigated theoretically and experimentally.” ' For example, for the o—p Ga,O;3 phase junction, a
first-principles study was performed to reveal the nature of the band alignment and its effect on the
efficient separation of photogenerated carriers.'® It is reported that the strain and lattice misfit at the
interface junctions significantly tune their energy bands. Based on the calculation results and the

experimentally-observed charge transfer, a type-Il band alignment is proposed for o/f Ga,0O;

21

ACS Paragon Plus Environment



oNOYTULT D WN =

The Journal of Physical Chemistry

phase-junction. This type-II band alignment is with a higher valance band of a-Ga,Os that is 0.35 eV
above that of 3-Ga,0;, and a conduction band offset of only 0.07 eV, as shown in Figure 12. It is
suggested that the photogenerated electrons transfer may follow the adiabatic mechanism due to the

strong coupling in the conduction bands of two-phase materials.
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Figure 13. (a) Photocurrent density—voltage (J-V) curve of the photovoltaic device
(FTO/rutile/anatase/ITO) under UV illumination. (b) Illustrations of the proposed band alignment of
the rutile/anatase coaxial solar cell. (¢c) Schematic illustration of the TiO, phase junction device and
the charge carrier transport route. Reprinted with the permission from ref. 101. Copyright 2015
Elsevier.

To demonstrate the band alignment at the interface of phase-junction, a prototype photovoltaic
device based on TiO, rutile/anatase coaxial nanorod arrays (NRAs) was prepared.'®’ Contrasting
with photoresist or behavior of single phase TiO, devices, the device with anatase-rutile
phase-junction shows anordinary photovoltaic response (open-circuit voltage Vo 154 mV,
short-circuit current density Ji: 1.76 mA/cm?) (Figure 13). These experimental evidences illustrate
that the built-in electric field at the interface of anatase-rutile phase-junction in the
FTO/rutileNR As/anatase/ITO device provides the direct driving force for efficient separation of

photogenerated charges.
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3.2 Time-resolved spectroscopic studies on the promoted charge transfer
The charge transfer process across the phase-junction has been well-studied directly with
various techniques.®® *® '911* With ESR characterizations, the electron transfer from rutile to anatase

5,12 while the

is claimed in the transition points between anatase and rutile in Degussa P2
photoinduced electron transfer from anatase to rutile is proposed in partially reduced P25.""" With
TEM results of the patterned TiO,(anatase)/TiO,(rutile) bilayer-type photocatalyst, the interfacial
electron transfer from anatase to rutile is explained to be the main reason for the increase of charge
separation efficiency, resulting in the high photocatalytic activity of Degussa P25.'"

Time-resolved spectroscopic techniques, which can characterize the photogenerated charge
dynamics directly, have been widely applied in the study of charge transfer across phase-junctions.''
16120 Time-resolved mid-IR spectroscopy, which is proved to be a powerful tool to monitor the
photogenerated electron dynamics in semiconductor photocatalyst,121 is used to study the electron
transfer across the phase-junction.”” ''® Based on the fairly different dynamics of the transient
mid-IR absorption in anatase and rutile, the interfacial electron transfer process was analyzed with
the relationships between the initial mid-IR absorption and the corresponding phase composition of
anatase/rutile phase-junction TiO, (Figure 14). The charge transfer process is confirmed across the

anatase:rutile phase-junction, and the electron transfer from anatase to rutile is proposed in

anatase/rutile TiO, prepared by calcination method.
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Figure 14. Transient mid-IR absorption decays of pure-phase anatase, pure-phase rutile, and
anatase/rutile phase-junction samples of TiO,-600, TiO,-700, A/R-600, A/R-700 in vacuum (a) and
in 20 Torr of methanol (b) excited by 355 nm laser. The TiO,-600, TiO,-700 samples were prepared
by calcination method at high temperatures. The A/R-600, A/R-700 TiO, samples were mechanically
mixed anatase/rutile samples with the same phase compositions of TiO,-600, TiO,-700 samples,
respectively. Reprinted with permission from Ref. 116. Copyright (2014) American Chemical
Society.

By exploiting the different absorption signatures of phtogenerated charges in different phases,
transient absorption absorption (TAS) spectroscopy is successfully used to separately track the yield
and lifetime of photogenerated charges in different phase sites in the phase-junction composites
(Figure 15)""%1° The transient absorption signals locate at about 460 and 550 nm are attributed to
holes for anatase and rutile TiO,, respectively. As shown in Figure 15a, it is confirmed that the
photogenerated holes transfer from rutile to anatase on submicrosecond time scales, based on the
analysis of the spectral shape and position of the absorption signal. On microsecond time scale, the
anatase hole yield increase significantly due to the hole transfer, resulting in 5-fold increase for a
20:80 anatase-rutile composite (Ti0,-800). However, the hole transfer does not result in an
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increase in charge-carrier lifetime. An intermediate recombination dynamic between that of pure
anatase (t;, =~ 0.5 ms) and rutile (t;, =~ 20ms) is obtained in the anatase:rutile junction (t;, =~ 4

ms) (Figure 15c).
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Figure 15. Transient absorption spectra of TiO, samples in argon gas atmosphere at (a) 10 ps and (b)
100 ms after a laser pulse (355 nm, 6 ns pulse width). (c) Normalized transient absorption decays in
argon gas atmosphere, monitored at 460 nm in anatase and Ti0,-800 and 550 nm in rutile and
Ti0,-800 after a laser pulse (355 nm, 6 ns pulse width). Reprinted with permission from Ref. 119.
Copyright (2016) American Chemical Society.

Time-resolved photoluminescence spectroscopy, which can reflect the dynamics of
photoinduced charges in different phases, is also utilized in the research of the phase-junction roles

in solar energy conversion field."'” 12 122 yisible (~500 nm) and near-infrared (NIR, ~830 nm)
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emission bands were monitored to give insight into the photoinduced charges of anatase and rutile,
respectively. New fast photoluminescence decay components appeared in the visible luminescence of
rutile-phase dominated TiO; and in the NIR luminescence of anatase-rutile phase-junction TiO,
samples, demonstrating that the charge separation occurred at the phase junction. The charge
separation slowed the recombination on the microsecond time scale, while the millisecond decay of
the charge carriers in anatase TiO, was accelerated with no change in the charge carrier dynamics of
rutile TiO,. Thus, charge separation at the anatase/rutile phase junction caused an increase in the
charge carrier concentration on a microsecond time scale, which is likely the main reason for the
enhanced photocatalytic activity.

Band alignment and charge separation dynamics across the phase-junction interfaces have been
extensively investigated. Since there are multiple types of band alignment at the phase-junction
interfaces as discussed for anatase-rutile phase junction in Figure 10, electron migration in either
direction between the two phases at the interface has been reported. With transient infrared
absorption-excitation energy scanning spectra, Mi et al. claimed that the electron migration direction
is controlled by dynamical factors.*® Thus several strategies are demonstrated to be able to tuning the
electron migration direction, such as varying the particle size,” putting scavengers on TiO, phases,
or both. Moreover, the trap-state energetics plays an important role in determining the direction of
photogenerated charge separation across phase-junction interfaces.

3.3 Imaging the phase junction
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Figure 16. (a) Topographic and (b) 3D surface potential image of the cross section of anatase-rutile
phase-junction corresponding to the region as labeled in panel a. (c) The built-in potential
distribution of anatase-rutile phase-junction was derived from panel b. (d) The intensity distribution
of built-in electric field across the interface of anatase-rutile phase-junction. Reprinted with
permission from Ref. 123. Copyright (2017) American Chemical Society.

Microscopy imaging techniques can probe directly the interface structure and their electric
properties. Kelvin probe force microscopy (KPFM), which could directly image the local work
function of anatase-rutile phase-junction, was employed to measure the surface potential profile
across the interface of a model anatase-rutile phase-junction on nanometer scale.'”® The 3D surface
potential at the interface of TiO, phase junction show obvious difference in surface potential (Figure
16b). Surface potential variation displays gradual change across the interface from rutile to anatase.
The CPD of rutile is about 30 mV lower than that of anatase (Figure 16c), demonstrating that work

function of rutile is 30 mV higher than that of anatase. An internal built-in electric field up to 1
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kV/cm with upward band bending from anatase to rutile was confirmed (Figure 16d). Moreover, the
vectorial charge transfer of photogenerated electrons from rutile to anatase was demonstrated with a

home-built spatially resolved surface photovoltage spectroscopy (SRSPS) directly.

Anatase Rutile

Figure 17. Schematic illustration of obtaining the energy band alignment of a anatase-rutile
phase-junction using cross-section KPFM and the transfer direction of photogenerated charges at the
interface of a anatase-rutile TiO, phase junction. Reprinted with permission from Ref. 123.
Copyright (2017) American Chemical Society.

Based on the imaging results, a mechanism for charge separation of anatase-rutile
phase-junction is proposed. The surface work function of rutile (¢r) is higher than that of anatase (pa)
by 30 mV, indicating that the vacuum energy level of rutile locates above that of anatase. A built-in
electric field up to 1 kV/cm is detected at the anatase-rutile phase-junction interface with the
direction from anatase toward rutile, demonstrating that the built-in electric field dominates the
charge transfer. The direction and strength of built-in electric field should be changed by the
synthesis method, doping level, and the lattice alignment across the phase junction, which can in turn

affect the charge transfer dynamics.
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4. Summary and Perspectives

We have briefly summarized the recent advances in the phase-junction strategy for fabricating
internal electric field and promoting charge separation in solar energy conversion filed. The phase
junction is more easily formed due to the similar crystal structure between the two phases. The
applications of typical phase-junctions, especially anatase-rutile TiO, and a-f Ga,Os phase-junction,
were reviewed in detail. The anatase-rutile TiO, phase-junction has been successfully used in
photocatalytic H, production and photoelectrochemical water splitting to enhance the activity
considerably. The a-f Ga,0s phase-junction improves effectively the photocatalytic performance for
the overall water splitting. Then the roles of phase-junction in solar energy conversion were
discussed in terms of the band alignment across the phase-junction thermodynamically, and the
kinetic mechanism of the phase-junction, from the viewpoint of both time-resolved and spatial
resolved characterizations. The built-in electrical field across phase junction is detected directly by
the spatial resolved microscopy, and the promoted charge transfer and the retarded charge
recombination are characterized separately by time-resolved spectroscopies. It is supposed that the
electron migration direction across the phase-junction interface can be controlled by the particle size,
the synthesis method, doping level, and the lattice alignment across the phase junction, or the
electron/hole scavengers.

To date, the phase-junction used in solar energy conversion is limited to UV-responsive
materials, such as TiO,, Ga,0;, et al. To increase the solar energy conversion efficiency, further
studies are needed to fabricate phase-junction with visible to near-infrared responsive properties.

124

Doped TiO, or visible-responsive semiconductor photocatalyst ™ with various phase structures

might be the candidate. With respect to the fundamental understanding of phase-junction, it is
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decisive to clarify the controlling factors for direction and strength of the built-in electric field and
the direction and efficiency of the charge separation in future. Moreover, the reaction mechanism on
different phases for the prepared phase junction, which will determine the performances of the
obtained phase-junction, is still an important topic. With continued advances in the fabrication of this
diverse family of phase-junction photocatalysts, improved understanding on their kinetic factors,
reaction mechanisms, and exploration of new applications, this research field should remain fertile
for many years to come.
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