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Hydrogenases are microbial enzymes that catalyse the con-
sumption and production of H2 and are excellent templates 
for designing H2-activating mimetic catalysts1–3. Based on 

the metal composition of the active centre, these enzymes are clas-
sified into [NiFe]-, [FeFe]- and [Fe]-hydrogenases4. Among these, 
[Fe]-hydrogenase catalyses a reversible hydride transfer from H2 
to methenyl-tetrahydromethanopterin (methenyl-H4MPT+) to 
form methylene-H4MPT (Fig. 1a)5 and contains an iron-guanyl-
ylpyridinol (FeGP) cofactor as a prosthetic group (Fig. 1b)6. [Fe]-
hydrogenase also catalyses proton exchange (H2/D+, H2/2D+) and 
para/ortho-H2 exchange reactions only in the presence of methenyl-
H4MPT+ (refs. 7–9) and an exchange of the hydrogen atom in the pro-R  
position of methylene-H4MPT with the protons of water10.

Architecturally, [Fe]-hydrogenase is a homodimer built from 
two N-terminal domains and one central domain, where the latter 
is composed of the C-terminal segments from both monomers11,12. 
The N-terminal and central domains form two active-site clefts, 
with each serving as a binding site for the FeGP cofactor and the 
substrate (methenyl-H4MPT+/methylene-H4MPT)12–14. The active-
site clefts are predicted to adopt open and closed conformations.  
So far, the holoenzyme (bound with the FeGP cofactor) without a 
substrate12,13 and the catalytically inactive C176A mutated holoen-
zyme complexed with methylene-H4MPT14 have only been structur-
ally analysed in their open conformations. A catalytically irrelevant 
closed conformation was only found in the structure of the apoen-
zyme (with neither the FeGP cofactor nor the substrate bound)11.

The [Fe]-centre of the FeGP cofactor has been identified as a 
key player for H2 activation. Its low-spin Fe(ii) is hexacoordinated 
with two CO, one pyridinol nitrogen, one acyl carbon, one cyste-
ine thiolate and a water molecule in the open-inactive state of this 

enzyme (Fig. 1b)13. The water-binding site of Fe has been predicted 
to be the site of H2 binding based on spectroscopic and structural 
analyses of [Fe]-hydrogenase complexed with inhibitors14–17. Using 
these data, various density functional theory (DFT) based com-
putational studies have been performed and catalytic mechanisms 
proposed14,18–20. Even before the discovery of the FeGP cofactor, a 
catalytic mechanism involving a C14a carbocation adjusted by a 
specific protein surrounding was proposed, in which H2 was bound 
to C14a and then heterolytically cleaved in a reaction similar to 
that of alkanes and H2 under superacid conditions7,9,21,22. Despite 
considerable effort, the reaction mechanism of [Fe]-hydrogenase 
remains obscure, primarily because of the lack of information about 
the closed active conformation. In particular, a [Fe]-hydrogenase–
methenyl-H4MPT+ complex structure is indispensable.

Here, we present an atomic-resolution crystal structure (1.06 Å 
resolution) of a substrate-bound closed active form. Based on the 
structural and quantum mechanics/molecular mechanics (QM/MM)  
data, we present a fairly precise catalytic scenario for the [Fe]-
hydrogenase reaction.

Results
Structures of [Fe]-hydrogenase in the open/closed states. Crystal 
structures were determined for the [Fe]-hydrogenase holoenzyme 
from Methanococcus aeolicus in an open state at 2.3 Å resolution 
(PDB code 6HAC), which essentially corresponds to that previ-
ously reported (Fig. 2a) and for the [Fe]-hydrogenase holoenzyme–
methenyl-H4MPT+ complex in a closed state at 1.06 Å (crystal form 
A, PDB code 6HAV) and 1.85 Å (form B, PDB code 6HAE) resolu-
tion (Fig. 2b and Supplementary Table 1). The crystals containing  
the enzyme in the open state were obtained in the absence of the 
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substrates under 95%N2/5%H2, whereas crystals in the closed state 
grew only in the presence of methenyl-H4MPT+ under 100% N2. 
The trick for crystallization in the absence of H2 was to suppress the 
catalytic cycling from the open into the closed state and vice versa. 
The structures of the N-terminal and central domains were nearly 
identical in the two states (open and closed) (Fig. 2a,b), which 
indicates a rigid body movement of the N-terminal domains in the 
open/closed conformational changes (Supplementary Fig. 1).

The X-ray structures of the closed states of [Fe]-hydrogenase show 
the FeGP cofactor and methenyl-H4MPT+ embedded in the cleft 
walls of the N-terminal and central domains, respectively (Fig. 2b).  
In contrast to their separate positions in the open state14, the FeGP 
cofactor and substrate of the closed [Fe]-hydrogenase are proxi-
mate to one another and form multiple contacts (Fig. 2b,d,e). His14 
and Trp148 are oriented with their bulky side chains towards the 
Fe centre and Met252, Met321′ and Phe281′ (amino-acid resi-
dues of the partner monomer are marked with a prime) towards 
methenyl-H4MPT+ to clamp the rings together and to adjust the 
ring conformations for creating a proper active-site geometry. The 
most pronounced residue, Met252, provides van  der Waals con-
tacts between its sulfur and C14a of methenyl-H4MPT+ as well as 
between its methyl group and the phenyl ring of methenyl-H4MPT+ 
(Fig. 2e and Supplementary Fig. 2). The important function of 
Met252 in catalysis is substantiated by its strict conservation in [Fe]-
hydrogenases (Supplementary Fig. 3) and the dramatic decrease of 
the specific activity measured for the Met252 to alanine, serine and 
phenylalanine variants (Supplementary Table 2).

The tight packing in the closed conformation causes a tilt of the 
pyridinol ring of the FeGP cofactor of 15° (Supplementary Fig. 4)  
and of the imidazoline and phenyl rings of methenyl-H4MPT+ 
of ~20° compared to their orientations in the open methylene-
H4MPT-bound C176A holoenzyme variant. As a first consequence, 
the distance between His14 and the 2-OH of the pyridinol is  
shortened from 4.9 Å to 3.3 Å, which makes the latter a part of a pro-
ton relay, as shown in Supplementary Fig. 5. The shorter distance  
causes a pKa decrease of the 2-OH group in the closed state and 

corroborate its dedicated role as a catalytic base in the enolate form 
during H2 cleavage. As a second consequence, the tilt of the imid-
azoline ring of methenyl-H4MPT+ towards the Fe centre reduces 
the distance between Fe and C14a to 3.8 Å, which agrees with the 
range of distances for H2 activation predicted by previous DFT com-
putations19,20. The water ligand of Fe thereby becomes dissociated  
(Fig. 2c,d), as predicted by Dey18.

Despite encapsulation of the catalytic part of the bulky FeGP 
cofactor and the substrate upon cleft closure, the Fe centre is still 
accessible by a narrow hydrophobic channel most likely used by H2 
(Supplementary Fig. 6). In the channel of crystal form A, but not in 
one monomer of form B, a weak elongated electron density is visible 
reaching the unoccupied Fe(ii) binding site. Obviously, linear and 
rather hydrophobic compounds like O2, N2 or HSCN can bind with a 
low occupancy in the absence of H2. The modelling of two water mol-
ecules did not adequately explain the elongated shape of the electron 
density (their occupancy was only 40–50%; Supplementary Fig. 7).

Spectroscopic analyses. A Mössbauer spectrum of [Fe]-
hydrogenase from M. aeolicus in aqueous solution revealed two 
species whose iron sites have slightly different electronic struc-
tures (Supplementary Fig. 8). The dominant species, subspectrum 
2 (80% relative intensity), was similar to that of [Fe]-hydrogenase 
purified from Methanothermobacter marburgensis23, while sub-
spectrum 1 was not visible in previous experiments23,24. On adding 
methenyl-H4MPT+ to M. aeolicus [Fe]-hydrogenase, subspectrum 
1 increased, such that both species had nearly the same intensity 
(55:45). Mössbauer subspectra 1 and 2 differ mainly by the isomer 
shift of 0 versus 0.09 mm·s−1. The higher isomer shift of subspec-
trum 2 most probably corresponds to hexa-coordination of Fe in 
the open form, whereas penta-coordination of Fe in the closed state 
leads, on average, to shortened bonds and thus lower isomer shifts25. 
Therefore, Mössbauer spectra 1 and 2 presumably reflect closed and 
open conformations of the enzyme, respectively.

Moreover, infrared spectroscopic data indicated that the relative 
intensities and frequencies of the asymmetric CO (~2,000 cm−1) and 
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symmetric CO (~1,940 cm−1) bands are almost unchanged in the 
absence and presence of methenyl-H4MPT+ (Supplementary Fig. 9). 
Thus, the geometry of the CO ligands and presumably of the entire 
Fe centre appears to be largely maintained when switching from the 
hexa- to the pentacoordinated Fe upon H2O removal.

Structures of the FeGP cofactor and methenyl-H4MPT+. The 
1.06 Å electron-density map of closed [Fe]-hydrogenase allows 
for an accurate analysis of the geometric parameters of the FeGP 
cofactor and methenyl-H4MPT+ (Fig. 3). The planarity of the pyr-
idinol/pyridone ring of the FeGP cofactor and the C2–O distance 
of 1.33 Å (for reference, C–O single bond of phenol, 1.36 Å; C=O 

double bond within an aromatic ring, 1.2 Å) support an enol or eno-
late tautomeric state with the 2-OH group serving as the catalytic 
base. A distinction between enol and enolate forms is not possible. 
The bond distances and angles of the FeGP cofactor are very simi-
lar to those of a mimetic compound with pentacoordinated iron 
(Supplementary Fig. 10)26.

Substantial deviations from the standard geometry are identified 
in the imidazoline of the pterin-imidazoline-phenyl ring system of 
methenyl-H4MPT+. The distance of 1.23 Å between N5 and C14a 
is substantially shorter (Fig. 3c,d and Supplementary Fig. 11) than 
that of the relaxed state (1.31 Å). Consistently, the distance of the  
C14a−N10 bond (1.43 Å) is longer than in the relaxed state (1.33 Å). 
As a consequence, the positive charge on N5 and the negative 
charge on N10 are increased in a distorted conformation com-
pared to a fully relaxed one, while the charge on C14a is unchanged 
(Supplementary Fig. 12). N5 may stabilize the electron-rich Fe–H 
intermediate that is generated during H2 cleavage. The short C=N 
double bond of the imidazoline ring as well as the lack of a hydrogen 
bond donor to the lone-pair electron of N5 and N10 and an acidic 
amino acid to C14a do not coincide with C14a being a carbocation, 
as previously proposed9,21,22. Notably, the firmly fixed polypeptide 
surrounding of the substrate appears to enforce the tilt of the phe-
nyl ring out of the plane formed with C14a, N5 and N10, which 
increases the sp3 character of N10 and may cause the observed dis-
torted imidazoline geometry. The partial negative charge on N10 
might increase the pKa of the 2-OH of the FeGP cofactor, which 
stabilizes its protonated state (N10−2OH distance, 3.08 Å).

Catalytic mechanism. To better understand the catalytic mecha-
nism of [Fe]-hydrogenase, we studied the processes that occur in the 
closed conformation of the enzyme (Fig. 4) using QM/MM based 
on the ONIOM method (see Methods for computational details). 
The QM/MM computations revealed a protonated imidazole group 
of His14 and a deprotonated 2-OH group of pyridinol to be a local 
minimum. The free energy profile of the catalytic cycle indicates an 
overall facile process (Supplementary Figs. 13 and 14). Starting with 
a deprotonated 2-OH group of the pyridinol (which can serve as 
a catalytic base for H2 activation20,27) located on the FeGP cofactor 
(2), the binding of H2 onto the empty sixth coordination site of the 
Fe centre (2→3) is very mildly exergonic (−0.2 kcal mol−1). H2 can 
then be heterolytically cleaved between the proximate O− (which 
accepts the proton) and the Fe centre (which retains the hydride 
anion) with a low barrier of only 7.8 kcal mol−1 (3 → TS3,4). The 
resulting intermediate, 4, is stabilized by 8.9 kcal mol−1 relative to 
the transition state. A second energetic barrier is encountered dur-
ing the transfer of the hydride anion from Fe to C14a located on the 
MPT+ substrate (4 → TS4,5), which is lower than that involved in 
heterolytic H2 cleavage (5.8 versus 7.8 kcal mol−1) according to our 
computations. The resulting intermediate (5) is then stabilized by 
7.7 kcal mol−1 relative to the transition state. From here, the enzyme 
would switch back to the open conformation (5 → 6), where a water 
molecule coordinates to the empty sixth ligation site of Fe.

One interesting feature is that the crystal structure shows a con-
siderable distance between the Fe centre and the C14a atom of the 
MPT+ substrate. However, during the course of optimization of the 
active site, our computations revealed that a considerable amount of 
volume is available and that the MPT+ substrate is sufficiently flex-
ible to allow movement closer to the Fe centre during the catalytic 
process. For example, the Fe···C14a distance decreases from 3.73 Å 
(4) to 3.34 Å (TS4,5) to 3.21 Å (5) over the course of the catalytic 
mechanism (Supplementary Fig. 15), which presumably greatly 
reduces the energetic cost associated with the hydride transfer pro-
cess. Moreover, our computations show that the aforementioned 
distortion of the imidazoline ring is alleviated in the computed mod-
els (Supplementary Fig. 15), where the N5–C14a and C14a–N10  
bond lengths (that is, 1.33 Å and 1.32 Å in 2) closely match those 
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of a free MPT+ substrate (1.31 Å and 1.33 Å). More typical bond  
lengths are seen in other structures (for example, 4 and 5). Taken 
together, these data further indicate that the active site contains 
enough free volume for the MPT+ substrate to reorient itself to 
facilitate hydride transfer. Overall, our computations reveal that the 
catalytic process should occur very quickly in the enzyme’s closed 
conformation. Note, however, that these computations cannot 
exclude the presence of the distorted methenyl-H4MPT+ observed 
in the closed crystal, because changes to the size of the QM region of 
the active site and the presence of the second monomer (which was 
excluded in our computations) may subtly influence the geometry 
of the active site. The presence of a distorted methenyl-H4MPT+ 
might further decrease the activation energy of heterolytic H2  
cleavage (TS3,4).

Conclusions
In summary, based on both the new crystal structures and QM/MM 
computations, we propose a catalytic cycle for [Fe]-hydrogenase 
(Fig. 4). In contrast to [NiFe]- and [FeFe]-hydrogenases, [Fe]-
hydrogenase reveals, as a central feature, conversion between the 
open substrate-accessible and the closed catalytically active forms 
(Supplementary Video 1). The tightly associated FeGP-cofactor/
substrate pair in the closed state expels a water ligand from the 
saturated hexacoordinated Fe, which allows thermo-neutral bind-
ing of H2 to the moderately polar and unsaturated site of the Fe 
centre (which can be accessed via a narrow channel). Methenyl-
H4MPT+ not only serves as a hydride acceptor but also plays a key 

role in tuning the iron centre for H2-binding/activation. Activation 
of the active site by removal of the water ligand by substrate bind-
ing answers the long-standing question concerning the reasons for 
the substrate dependence of the proton-exchange reaction of [Fe]-
hydrogenase7,9,18. The overall reaction appears to include reposi-
tioning and relaxing of the distorted substrate, as shown by QM/
MM computations (Fig. 4). The catalytic-site structure of [Fe]-
hydrogenase and the H2-based hydrogenation process offer a strong 
basis for developing new synthetic and plastic catalysts that catalyse 
the hydrogenation of novel substrates with H2.

Methods
Crystallization of the [Fe]-hydrogenase from M. aeolicus. Substrate-free  
[Fe]-hydrogenase holoenzyme from M. aeolicus was crystallized in an anaerobic 
tent with gas composition of 95%N2/5%H2 at 8 °C by using the sitting drop vapour 
diffusion method using 96-well two-drop MRC crystallization plates (Molecular 
Dimensions). For the initial screening, 0.7 µl of 24 mg ml−1 reconstituted  
[Fe]-hydrogenase was mixed with 0.7 µl of reservoir solution (of crystallization 
kits) under yellow light and incubated under dark conditions. The best diffracting 
diamond-shaped crystal grew in one month with 20% wt/vol polyethylene 
glycol 3350, 100 mM tri-sodium citrate pH 4.0 and 200 mM tri-sodium citrate as 
reservoir solution (JBScreen Wizard 3 & 4 HTS screening kit, Jena Bioscience). 
Crystallization of [Fe]-hydrogenase–methenyl-H4MPT+ complex was performed 
in the anaerobic tent with gas-phase 100% N2 at room temperature under dark 
conditions. [Fe]-hydrogenase holoenzyme (50 mg ml−1) was mixed with 10 mM 
methenyl-H4MPT+, both dissolved in 10 mM 3-(N-morpholino)propanesulfonic 
acid/KOH pH 7.0. The final concentrations of [Fe]-hydrogenase and methenyl-
H4MPT+ were 24 mg ml−1 and 3 mM, respectively. After incubating the mixture 
in this tent under dark conditions for 5 min, the enzyme solution was centrifuged 
using a MiniSpin-plus system (Eppendorf) at 8,000 r.p.m. for 5 min using 
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centrifugal filters (0.45 µm) made of polyvinylidene fluoride (Millipore) to remove 
the aggregated proteins and dusts. After mixing 0.7 µl drop and 0.7 µl reservoir 
solution spotted on 96-well MRC crystallization plates (Molecular Dimensions), 
crystals emerged with the JBScreen Wizard 3 & 4 HTS (Jena Bioscience) kit 
containing 20% wt/vol polyethylene glycol 3350 and 200 mM sodium thiocyanate. 
For reproduction, the crystallization solution of the company was essential. The 
best diffracting long rod-shaped crystal belonging to form A was obtained in two 
weeks in a protein-mixture-to-crystallization-reservoir ratio of 2 µl:2 µl spotted 
on a 24-well Junior Clover plate. The plate-shaped crystals belonging to form 
B grew under the same crystallization conditions supplemented by 3% wt/vol 
1,5-diaminopentane dihydrochloride with a ratio of 0.7 µl protein mixture to 0.7 µl 
crystallization reservoir (in 96-well plates).

Structural analysis. Crystals of the substrate-free [Fe]-hydrogenase holoenzyme 
from M. aeolicus were flash-frozen (3–5 s) in a solution containing 20% wt/vol 
polyethylene glycol 3350, 100 mM tri-sodium citrate pH 4.0, 200 mM tri-sodium 
citrate and 10% vol/vol glycerol at 8 °C in an anaerobic tent (with a gas composition 
of 95% N2/5% H2). Crystals of forms A and B from the co-crystallization of 
reconstituted [Fe]-hydrogenase and methylene-H4MPT+ were flash-frozen in the 
anaerobic tent (100% N2) in their respective crystallization solution supplemented 
with 20% vol/vol glycerol. The diffraction experiments for substrate-free  

[Fe]-hydrogenase were performed at 100 K on beamline BM30A (French Beamline 
for Investigation of Proteins) at the European Synchrotron Radiation Facility 
(ESRF) equipped with an ADSC Q315r charge-coupled device detector. The best 
data for form A and B crystals were collected at beamline PXII at the Swiss Light 
Source equipped with a PILATUS 6M detector. The data were processed with 
XDS28 and scaled with SCALA from the CCP4 suite29.

The structure of substrate-free [Fe]-hydrogenase was determined by  
molecular replacement with PHASER30 by using the native [Fe]-hydrogenase 
from M. marburgensis in complex with 2-naphthylisocyanide (PDB:4JJF) as a 
template. The structures of forms A and B were solved with PHASER by using 
the first structure of the reconstituted [Fe]-hydrogenase from M. aeolicus. The 
N- and C-terminal domains were separately used as templates for the molecular 
replacement. The models were manually built with COOT31 and refined with 
BUSTER32 for the substrate-free and form B substrate-bound [Fe]-hydrogenase 
structure. Form A [Fe]-hydrogenase was refined with Phenix33 considering  
all atoms except water as anisotropic and by adding the hydrogens in the  
riding position. The final models were validated using the MolProbity server 
(http://molprobity.biochem.duke.edu)34. Data collection, refinement statistics 
and PDB code for the deposited model are listed in Supplementary Table 1. The 
hydrogens were omitted in the final deposited model. The figures were generated 
and rendered with PyMOL (version 1.7, Schrödinger).
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Fig. 4 | The proposed catalytic cycle of [Fe]-hydrogenase. The open and closed forms are highlighted by the light orange and light blue backgrounds, 
respectively. Following the binding of methenyl-H4MPT+ and closure of the active-site cleft, the water molecule on the Fe site is removed. The distorted 
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Conformational change of [Fe]-hydrogenase. The transformation from  
the experimentally obtained open form to closed form was calculated with  
the morphing option from the Morph Server635. In the open form, methenyl-
H4MPT+ is modelled into the central domain as observed in the closed form 
(Supplementary Video 1).

QM/MM computations. To assess the free energies associated with the portion 
of the catalytic cycle that occurs in the closed enzyme conformation (Fig. 4), we 
used QM/MM computations within the ONIOM (ref. 36) framework in Gaussian09 
(ref. 37). An active site consisting of truncated versions of the FeGP cofactor and 
the substrate (MPT+), as well as Cys176 and the proton transfer network (His14, 
Glu207, Thr20, Arg101 and two water molecules), shown in Supplementary Fig. 5,  
were included in the ‘high level’ computations at the M06/6-31G(d.p) level  
(ref. 38,39). The ‘low level’ (computed using the universal force field) included the 
remaining portions of the truncated FeGP cofactor and MPT+ substrate, as well as 
all other amino-acid residues of a single monomer. Amino acids with electrically 
charged subgroups were protonated or deprotonated according to a physiological 
pH, which produced an overall charge of −13 for the protein (neutral for the high 
level/−13 for the low level). The nature of all stationary points (as either minima 
or transition states) was confirmed by analysis of vibrational frequencies (zero 
for minima, one for transition states). Reported free energies include unscaled 
free energy contributions taken from the QM/MM computations. The atomic 
coordinates of the optimized computational models (steps 2–5, TS3,4 and TS4,5) 
are available as Supplementary Data 1–6.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other findings of this 
study are available from the corresponding authors on reasonable request. X-ray 
crystallographic data are available in the RCSB-Protein Data Bank under accession 
numbers 6HAC (open conformation), 6HAV (closed conformation form A) and 
6HAE (closed conformation form B).
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