CHEMISTRY OF MATERIALS

Spinel Metal Oxide-Alkali Carbonate-Based, Low-Temperature Thermochemical Cycles for Water Splitting and CO₂ Reduction

Bingjun Xu, Yashodhan Bhawe, and Mark E. Davis*

Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States

S Supporting Information

ABSTRACT: A manganese oxide-based, thermochemical cycle for water splitting below 1000 °C has recently been reported. The cycle involves the shuttling of Na[±] into and out of manganese oxides via the consumption and formation of sodium carbonate, respectively. Here, we explore the combinations of three spinel metal oxides and three alkali carbonates in thermochemical cycles for water splitting and CO₂ reduction. Hydrogen evolution and CO₂ reduction reactions of metal oxides with a given alkali carbonate occur in the following order of decreasing activity: $Fe_3O_4 \ge Mn_3O_4 \ge Co_3O_4$, whereas the reactivity of a given metal oxide with alkali

carbonates declines as $\underline{\text{Li}_2\text{CO}_3 > \text{Na}_2\text{CO}_3 > \text{K}_2\text{CO}_3}$. While hydrogen evolution and CO₂ reduction reactions occur at a lower temperature on the combinations with the more reactive metal oxide and alkali carbonate, higher thermal reduction temperatures and more difficult alkali ion extractions are observed for the combinations of the more reactive metal oxides and alkali carbonates. Thus, for a thermochemical cycle to be closed at low temperatures, all three reactions of hydrogen evolution (CO₂ reduction), alkali ion extraction, and thermal reduction must proceed within the specified temperature range. Of the systems investigated here, only the Na₂CO₃/Mn₃O₄ combination satisfies these criteria with a maximum operating temperature (850 °C) below 1000 °C.

KEYWORDS: thermochemical cycle, water splitting, CO₂ reduction, spinel metal oxide, alkali carbonate

INTRODUCTION

There is a considerable amount of under-utilized thermal energy from high-temperature heat sources (>700 °C), for example, nuclear power plants, because the maximum operating temperature for steam turbines is typically below 650 °C (primarily limited by the corrosiveness of high pressure, high temperature steam).¹ Thermochemical cycles for water splitting or CO_2 reduction are able to convert thermal energy into chemical energy stored in hydrogen or CO, respectively. Water (CO_2) is split into stoichiometric amounts of hydrogen (CO) and oxygen in a series of chemical reactions via a closed thermochemical cycle, with heat as the only energy input. No other products are produced in these cycles. There are in general two types of thermochemical cycles: high-temperature, two-step cycles and low-temperature, multistep cycles. The former usually employs relatively simple reactions and benign chemicals, for example, transition metals and metal oxides; however, the operating temperature required to close the cycle is typically higher than 1500 °C.²⁻⁴ Currently, heat sources with such high temperatures, for example, high temperature solar concentrators, are still scarce. In contrast, heat sources at temperature range of 700-1000 °C are much more abundant, for example, nuclear power plants and medium-scale solar concentrators. In addition, hightemperature operating fluids, for example, molten salts,⁵ have been developed to work in this temperature range. Lowtemperature multistep thermochemical cycles are designed to

operate at <u>700–1000</u> <u>°C</u>; however, the toxic and corrosive chemicals involved pose significant environmental and engineering challenges. For example, in each reaction of the three-step sulfur–iodine thermochemical cycle for water splitting, with a highest operating temperature of 850 °C, at least one of the following chemicals are involved: H_2SO_4 , HI, SO₂, and I_2 .⁶

There are two general approaches for developing thermochemical cycles that are able to take advantage of more accessible heat sources: (1) two-step cycles with low operating temperatures; and (2) multistep cycles without employing toxic or corrosive chemicals. The first approach has been proven to be thermodynamically infeasible.^{7,8} Recently, we demonstrated the second approach.⁷ We showed that a manganese oxide-based, thermochemical cycle for water splitting can be closed at 850 °C without involving any toxic/corrosive chemicals.⁷ This manganese oxide-based thermochemical cycle consists of the following three main steps (detailed description of each step can be found elsewhere⁷):

(1) Hydrogen evolution step: Mn(II) in Mn₃O₄ is oxidized by water in the presence of Na₂CO₃, producing hydrogen. The spinel Mn₃O₄ is converted to a layered compound, α -NaMnO₂,

Received: November 30, 2012 Revised: March 19, 2013

during this step. The hydrogen evolution step proceeds via two sequential reactions:

(1.1) Mn_3O_4 reacts with Na_2CO_3 in the absence of water, forming α -NaMnO₂ and MnO (reaction 1). The Mn(III) species is extracted from Mn_3O_4 through the reaction with Na_2CO_3 , leaving the Mn(II) species in the form of MnO.

$$Mn_{3}O_{4}(s) + Na_{2}CO_{3}(s)$$

$$\rightarrow 2NaMnO_{2}(s) + MnO(s) + CO_{2}(g)$$
(1)

(1.2.) Mn(II) oxide is oxidized by water in the presence of Na₂CO₃, producing hydrogen and α -NaMnO₂ (reaction 2).

$$2MnO(s) + Na_2CO_3(s) + H_2O(g)$$

$$\rightarrow 2NaMnO_2(s) + H_2(g) + CO_2(g)$$
(2)

(2) Sodium cation extraction step: The Mn(III) species in α -<u>NaMnO₂ cannot be thermally reduced below 1000 $^{\circ}C_{1}^{9}$ whereas</u> the transition from Mn(III) and Mn(IV) oxides to Mn₃O₄ occurs below 850 °C. Therefore, it is critical to remove the sodium cation from the manganese oxide to close the thermochemical cycle below 1000 °C. The sodium cations in α -NaMnO₂ can be substituted with protons when it is suspended in water in the presence of CO₂. Water molecules intercalate into the manganese oxide layers, increasing the distance between the layers and mobilizing sodium cations. Protons from carbonic acid, formed via the reaction of CO₂ and water, can exchange with the sodium cations between manganese oxide layers. When CO₂, and in turn protons, are in excess, almost all sodium cations can be removed from the manganese oxide structure. A disproportionation reaction accompanies the ion exchange process:

$$2Mn(III)(s) \rightarrow Mn(IV)(s) + Mn(II)(s)$$
(3)

All Mn(IV) and the majority of Mn(III) species are in a proton exchanged <u>birnessite</u> phase. A fraction of the Mn(II) and the remainder of the Mn(III) are in an amorphous Mn_3O_4 phase, whereas the rest of Mn(II) species exists in the form of MnCO₃. Since no net oxidation or reduction reaction occurs during the ion exchange process, the average oxidation state of the Mn remains +3.

(3) *Thermal reduction* reaction: When the solid mixture collected after the sodium cation extraction is heated to 850 $^{\circ}$ C, it restores to the spinel Mn₃O₄ phase (with the release of CO₂ and O₂ in the process), which can be used in the next cycle.

The net reaction of the cycle is the production of stoichiometric amounts of hydrogen and oxygen from water (4), without the formation of any side products.

$$2H_2O(g) \to 2H_2(g) + O_2(g)$$
 (4)

The manganese oxide-based thermochemical cycle described above shares two main common features with the Mn/hydroxide cycle:^{10,11} (1) both cycles are based on the redox couple of Mn(II)/Mn(III); and (2) the intercalation and removal of sodium cation into and from manganese oxide structure plays an important role in closing the thermochemical cycle.^{9,10,12} However, the manganese oxide-based thermochemical cycle described above also has a number of distinctive features: (1) the cycle is closed at 850 °C, which has the potential of utilizing waste heat from abundant heat sources like nuclear power plants. In contrast, the high temperature step of the Mn/hydroxide cycle takes place at ~1650 °C, and heat sources with such high temperature are relatively scarce. (2) CO₂ significantly facilitates

the complete extraction of sodium cation from NaMnO₂; while water alone (as used in the Mn/Hydroxide cycle) results in incomplete sodium extraction from NaMnO₂ and in turn causes incomplete thermal reduction of Mn(III).¹² (3) Only 1/3 of Mn in the manganese oxide-based thermochemical cycle is active in the redox cycle when operating at 850 °C, since only 1/3 of Mn in Mn₃O₄ is at the oxidation state of +2. However, this cycle can also function with 100% of Mn as the active redox phase, provided suitable heat sources are available (>1650 °C). Therefore, the manganese oxide-based thermochemical cycle described above can take advantage of a much broader range of heat sources. Other thermochemical cycles based on spinel metal oxides and carbonates involve sacrificial Fe₂O₃, and thus are not closed.¹³

In our previous work, only one type of metal oxide (Mn_3O_4) and alkali carbonate (Na_2CO_3) each were explored. The rates of hydrogen evolution and sodium extraction steps depend sensitively on the redox properties of metals in the spinel oxides and facileness of intercalation of alkali cations. Therefore, here we investigate a variety of combinations of metal oxides with spinel structure $(Mn_3O_4, Fe_3O_4, and Co_3O_4)$ and alkali carbonates $(Li_2CO_3, Na_2CO_3, and K_2CO_3)$ in thermochemical cycles for both water splitting and CO_2 reduction. The reactivity patterns of the metal oxide and alkali carbonate combinations toward water splitting and CO_2 reduction are elucidated. Guiding principles for developing and optimizing low-temperature thermochemical cycles for water splitting and CO_2 reduction are discussed.

EXPERIMENTAL SECTION

Materials Preparation. Fe₃O₄ (95%), Mn₃O₄ (97%), Co₃O₄ (99.5%), Li₂CO₃ (99%), Na₂CO₃ (99.5%), and K₂CO₃ (99%) were purchased from Aldrich and used without further treatment. Na₂¹³CO₃ (99%) ¹³C) was purchased from Cambridge Isotope Laboratories and used without further treatment. The mixture of metal oxide (Fe₃O₄, Mn₃O₄, or Co₃O₄) and alkali carbonate (Li₂CO₃, Na₂CO₃, or K₂CO₃) with a molar ratio of 2:3 for the hydrogen evolution step was prepared by mixing these two powders in an agate mortar under ambient conditions. The alkali metal ions were extracted from the respective alkali metal oxides by bubbling CO₂ (99.997%, 10 cc/min) through an aqueous suspension of the powder (~5 wt % of solid) for 3 h at 80 °C. The powder used for the oxygen evolution step was obtained by separating the solid by centrifugation and drying at 100 °C in air.

Reaction Tests. All reaction tests were conducted in an Altamira Instruments AMI-200 catalyst characterization system equipped with a Dycor Dymaxion 2000 online mass spectrometer. The powders were pelletized, crushed, and sieved, and the particles between 20 and 35 mesh were used for testing. To prevent the alkali metal ions from reacting with the quartz used in the reactor tubes, the particles were supported between layers of 16-mesh alumina sand inside an alumina sheath. Under typical flow conditions, the flow rate of the gas was 50 cc/ min. Depending on the experiments, the gases used were Ar (99.999%), CO_2/Ar (2%/98%), or D_2O/Ar (5%/95%). Water ($D_2O)$ vapor was introduced by flowing the carrier gas through a bubbler (50 cc/min) with D₂O at room temperature. D₂O was used instead of H₂O to obtain a better signal-to-noise ratio of the signal in the hydrogen evolution step $(m/z = 4 \text{ for } D_2 \text{ instead of } m/z = 2 \text{ for } H_2)$. A ramp-and-hold temperature profile was used in the characterization of these materials. The typical ramp rate was $20 \ C/min$, and the hold temperatures were varied as needed. All reactions in this subsection were carried out in the solid-gas phase.

The conditions for water pulse experiments were similar to the flow reactions described above, apart from pulse introduction of D_2O to the gas stream for 2–15 min at the desired sample temperature. The reduction of the ion-extracted oxides was carried out under a 50 cc/min

Characterization. <u>Powder X-ray diffraction</u> patterns were collected on a Rigaku Miniflex II diffractometer using Cu K α radiation.

RESULTS

 Mn_3O_4 and Alkali Carbonates (Li₂CO₃, Na₂CO₃ and K₂CO₃). Mn_3O_4 reacts with Li₂CO₃ or Na₂CO₃ in Ar at or below 850 °C, releasing CO₂ as the only product in the gas phase; whereas no appreciable reaction occurs between Mn_3O_4 and K_2CO_3 in this temperature range (Figure 1a, the molar ratio of

Figure 1. (a) Reaction of Mn_3O_4 with Li_2CO_3 (top trace), Na_2CO_3 (middle trace), and K_2CO_3 (bottom trace) in the absence of water. (b) Solids after the thermal treatment at 850 °C in (a) were cooled down to 200 °C, before D_2O was introduced. The samples were then subjected to a temperature ramp-and-hold treatment to 850 °C in D_2O/Ar (5%/95%). (i, ii) D_2 and CO_2 traces for Mn_3O_4/Li_2CO_3 ; (iii, iv) D_2 and CO_2 traces for Mn_3O_4/Na_2CO_3 ; and (v, vi) D_2 and CO_2 traces for Mn_3O_4/K_2CO_3 .

 Mn_3O_4 and alkali carbonates is 2:3). The CO_2 evolution peaks are at 625 and 850 °C for Mn_3O_4/Li_2CO_3 and Mn_3O_4/Na_2CO_3 , respectively. In contrast, no detectable amount of CO_2 is produced with the Mn_3O_4/K_2CO_3 mixture below or at 850 °C. These observations clearly indicate the reactivity of alkali carbonates with Mn_3O_4 , gauged by the temperature of CO_2 evolution peak, follows the sequence: $Li_2CO_3 > Na_2CO_3 > K_2CO_3$.

Unlike the reaction between Mn_3O_4 and Na_2CO_3 (reaction 1), where all Mn(II) species exist in the form of MnO after reaction,⁷

 $Li_2Mn_2O_4$ and $Li_{0.4}Mn_{0.6}O$ phases are identified by powder X-ray diffraction (XRD) measurements after the temperature rampand-hold to 850 °C for Li_2CO_3/Mn_3O_4 in the absence of water (bottom trace, Figure 2a). Since the atomic molar ratio of Li to

Article

Figure 2. Powder XRD patterns identify intermediate phases in reaction of Mn_3O_4 with alkali carbonates (molar ratio 2:3) under various conditions. (a) Mixture of Mn_3O_4 and Li_2CO_3 heated to 850 °C before (bottom trace) and after (middle trace) the introduction of water. The top trace shows the diffraction pattern of the solid recovered after hydrolyzing LiMnO₂ in an aqueous suspension at 80 °C with CO₂ bubbling through for 3 h. (b) Physical mixture of Mn_3O_4 and K_2CO_3 at room temperature (bottom trace) and heated to 850 °C prior to (middle trace) and after (top trace) the introduction of water.

Mn is 1:1 in the starting mixture, a small fraction of Li-containing phase must not be detected by XRD. This result could either be due to the crystal size of the Li-containing phase being below the detection limit of XRD, or due to the Li-containing phase being amorphous. No significant difference in the powder XRD pattern is observed after heating the K_2CO_3/Mn_3O_4 mixture in Ar atmosphere to 850 °C (bottom and middle traces, Figure 2b), consistent with the lack of CO₂ evolution.

Hydrogen evolution is observed for Mn_3O_4/Li_2CO_3 and Mn_3O_4/Na_2CO_3 at or below 850 °C, but not for Mn_3O_4/K_2CO_3 (Figure 1b). The solid after the thermal treatment described in Figure 1a was cooled down to 200 °C, and subjected to a second temperature ramp-and-hold treatment to 850 °C in D_2O/Ar (5%/95%). D_2 evolution is detected from ~540 °C and peaks at ~645 °C and for Mn_3O_4/Li_2CO_3 (trace i in Figure 1b). Little CO_2 is produced during reaction (trace ii in Figure 1b), indicating most of the Li_2CO_3 has reacted with Mn_3O_4 during thermal treatment prior to water introduction. Based on the XRD data, only the <u>orthorhombic</u> LiMnO₂ phase is present after the hydrogen evolution reaction, suggesting all Mn(II) in Mn_3O_4 has been oxidized to Mn(III) (middle trace in Figure 2a). D_2 evolution occurs at 850 °C on Mn_3O_4/Na_2CO_3 (trace iii in Figure 1b), and the maximum rate of hydrogen evolution at 850

 $^{\circ}$ C is only 1/50 of that for Mn₃O₄/Li₂CO₃ (an indication that Li₂CO₃ is more active in promoting the hydrogen evolution reaction than Na₂CO₃). For both Mn₃O₄/Li₂CO₃ and Mn₃O₄/ Na₂CO₃, the total amounts of hydrogen detected are close to the theoretical amount expected for the total oxidation of the Mn(II) to Mn(III). The concurrent evolution of CO_2 with hydrogen suggests that not all the Na₂CO₃ is consumed in the reaction with Mn₃O₄ prior to the water introduction, and this result is consistent with our previous study.⁷ In addition, the fact that the ratio of the amount of CO2 produced before and after water introduction is very close to 2 indicates that Na2CO3 extracts all Mn(III) in Mn₃O₄ but is unable to react with the Mn(II) species in the absence of water.⁷ α -NaMnO₂ is formed as the only solid product after the hydrogen evolution reaction.⁷ No detectable amount of hydrogen is produced for Mn_3O_4/K_2CO_3 , suggesting no oxidation of Mn(II) has taken place. CO_2 is observed at 850 °C in the presence of water, and its amount is roughly equal to that expected from the total decomposition of K₂CO₃. Unreacted Mn₃O₄ and K-birnessite are identified after reacting with water at 850 °C by XRD. However, not all peaks in the XRD pattern are accounted for, partly because of the hydroscopic nature of the powder, which forms a wet layer during the time for one powder XRD measurement (~ 20 min). The solid-phase reaction between Mn₃O₄ with alkali carbonate was carried out prior to the introduction of water to independently determine the temperatures at which these reactions take place. In practical implementations, these two steps can be combined into one.

Li cation removal from LiMnO₂ cannot be achieved under similar conditions to that of sodium cation removal from α -NaMnO₂, that is, stirring in an aqueous suspension at 80 °C with CO₂ bubbling through for 3 h (henceforth referred to as water/ CO₂ treatment). We showed in our previous work that Na cation could be completely extracted from α -NaMnO₂ via the water/ <u>CO₂ treatment</u>. The XRD patterns of LiMnO₂ before and after the water/CO₂ treatment are very similar (top and middle traces, Figure 2a), suggesting that little Li cation has been removed from LiMnO₂. Moreover, no detectable amount of O₂ was observed when the water/CO₂ treated LiMnO₂ was subjected to a temperature ramp-and-hold procedure to 850 °C in Ar (confirms the lack of Li cation removal during the water/CO₂ treatment).

A fraction of CO₂ formed from the reaction of Mn₃O₄ with Li₂CO₃ is reduced to CO during the temperature ramp-and-hold to 850 °C in the absence of water, but not for Na₂CO₃ or K_2CO_3 . For both Mn₃O₄/Li₂CO₃ and Mn₃O₄/Na₂CO₃, all Mn(II) species in Mn₃O₄ are oxidized to Mn(III) in LiMnO₂ and α -NaMnO₂, respectively, after reacting with water at 850 °C (Figure 1b). The amount of D_2 produced from Mn_3O_4/Na_2CO_3 is within experimental error $(\pm 10\%)$ of the theoretical maximum amount; whereas only \sim 70% of the stoichiometric amount of D₂ was detected for Mn₃O₄/Li₂CO₃. Quantitative mass spectrometric analysis shows that the remaining $\sim 30\%$ of Mn(II) is oxidized by the CO₂ released during the reaction between Mn_3O_4 and Li_2CO_3 prior to the introduction of water, producing CO (Figure 3). In addition to the parent ion of CO₂ (m/z 44), m/z 28 signal is detected as a cracking fragment of CO₂. For pure CO_2 , the m/z 28 signal should theoretically trace the parent ion (m/z 44) signal, differing only by a scaling factor.¹⁴ Figure 3 shows that m/z 28 traces exactly m/z 44 by a factor of ~0.2 at temperatures below 685 °C, beyond which the two traces deviate significantly from each other. The difference in the two traces at temperature above 685 °C is attributed to CO produced from the reaction of CO_2 with the Mn(II) species .

Figure 3. Mass fragmentation analysis shows CO_2 is reduced to CO when reacting with Mn_3O_4 and Li_2CO_3 .

 Fe_3O_4 and Alkali Carbonates (Li₂CO₃, Na₂CO₃, and K₂CO₃). Both hydrogen evolution and CO₂ reduction reactions occur on Fe_3O_4/Na_2CO_3 at or below 850 °C (Figure 4).

Figure 4. Reaction of Fe $_3O_4$ with Na $_2^{13}CO_3$ confirms reduction of $^{13}CO_2$ to ^{13}CO prior to the introduction of water.

Na2¹³CO₃, rather than Na2¹²CO₃, was used to differentiate the contribution of CO produced from the carbonate and the CO₂ in the feed. Three ¹³CO₂ evolution peaks are observed during the temperature ramp-and-hold to 850 °C for Fe₃O₄/Na₂¹³CO₃ (molar ratio of 2:3) in Ar. The peak at 165 °C is likely from the decomposition of a sodium bicarbonate impurity in the sodium carbonate, whereas the two main ¹³CO₂ evolution peaks at 725 and 850 °C are attributed to the reaction of Fe_3O_4 with Na₂¹³CO₃. MS signal for ¹³CO (m/z 29, corrected for the contribution from the cracking fragment of ${}^{13}CO_2$) starts to rise at 735 °C, and peaks at 850 °C before returning to the baseline. When D_2O is introduced at 850 °C, a sharp D_2 evolution peak is observed, indicating not all Fe(II) in Fe_3O_4 has been oxidized by CO_2 . Approximately 85% and 15% of Fe(II) is oxidized by $\frac{13}{CO_2}$ and D₂O, respectively. Replacing Na₂¹³CO₃ with Na₂¹²CO₃ in the initial solid mixture yielded very similar results. Since the molar ratio of the starting mixture of Fe_3O_4/Na_2CO_3 is 2:3, the total amount of CO₂ released from Na₂CO₃ is 3 times that needed to fully oxidize all the Fe(II) in Fe_3O_4 . The fact that ~85% of Fe(II) is oxidized indicates that close to 30% $\rm CO_2$ is consumed in reduction reaction. Approximately 80% of the Fe(II) is oxidized by CO_2 (produced from the reaction between Fe_3O_4 and Na_2CO_3) during the temperature ramp-and-hold to

750 °C in Ar. The onset of CO evolution occurs at ~735 °C (Figure 4), whereas water oxidizes Fe(II) to Fe(III) with the stoichiometric production of hydrogen at as low as 560 °C (Table 1). The remaining Fe(II) after the completion of CO_2

Table 1. Onset Temperatures for Hydrogen Evolution andCO2 Reduction Reactions

	ons	onset temperature (°C)	
sample	CO ₂	D ₂	СО
Mn ₃ O ₄ /Li ₂ CO ₃	400	540	685
Mn ₃ O ₄ /Na ₂ CO ₃	515	850	_
Mn_3O_4/K_2CO_3	_	_	_
Fe ₃ O ₄ /Li ₂ CO ₃	375	<u>510</u>	<u>675</u>
Fe ₃ O ₄ /Na ₂ CO ₃	385	<u>500</u>	735
Fe ₃ O ₄ /K ₂ CO ₃	445	<u>500</u>	805

evolution from the decomposition of carbonates can then be oxidized to Fe(III) by water via hydrogen evolution reaction. Therefore, the temperature of thermal treatment of Fe_3O_4/Na_2CO_3 can be used to control the dominant oxidant for the oxidation of Fe(II) (Figure 5).

Figure 5. Percentage of CO of the reduction products (H₂ and CO) and total amount of H₂ and CO formed when the physical mixture of Fe₃O₄/Na₂CO₃ (molar ratio 2:3) reacts (i) at 850 °C with 2% CO₂ in the carrier gas (Ar); (ii) at 850 °C in Ar; (iii) at 750 °C in Ar; and (iv) at 650 °C in Ar. D₂O was introduced after the completion of CO₂ evolution from the decomposition of Na₂CO₃ to oxidize the remaining Fe(II) species to Fe(III). The dashed line shows the theoretical maximum amount of H₂ and CO can be formed per mole of Mn.

All the Fe(II) is oxidized to Fe(III) by CO₂ during the temperature ramp-and-hold to 850 °C in CO₂/Ar (2%/98%) (Figure 5), producing a stoichiometric amount of CO with respect to Fe(II). This result suggests that the incomplete oxidation of Fe(II) during the temperature ramp-and-hold procedure conducted in Ar is caused by the limited supply of CO₂. This speculation is also supported by the observation that the MS signals for ¹³CO and ¹³CO₂ decrease simultaneously (Figure 4). To deconvolute the contributions of the CO₂ that evolves from the decomposition of the Na₂CO₃ and the CO₂ in the carrier gas in the CO₂ reduction reaction, Fe₃O₄/Na₂¹³CO₃ was subjected to a temperature ramp-and-hold to 850 °C in a ¹²CO₂/Ar (2%/98%) atmosphere (Figure 6). The onset of the ¹³CO and ¹²CO peaks occurs at similar temperature (<u>~735</u> °C). The majority of the reduction product initially is ¹³CO,

Figure 6. CO_2 reduction with $Fe_3O_4/Na_2^{13}CO_3$ in the presence ((i), (ii), and (iii)) and absence (iv) of ${}^{12}CO_2$ in the feed.

suggesting ¹³CO₂ from Na₂¹³CO₃ is preferentially reduced. The proximity of the newly formed ¹³CO₂ to the Fe(II) species plays a key role. ¹²CO becomes the dominant reduction product after ¹³CO₂ is exhausted. ¹³CO accounts for approximately 30% of the reduction product, and the remainder is ¹²CO, with the total amount of CO produced (¹²CO and ¹³CO) being close to the amount required to fully oxidize all Fe(II) to Fe(III) (within ±10%).

Hydrogen evolution or CO_2 reduction reaction pathways can be controlled reversibly by tuning the relative concentrations of CO_2 and water. Upon the introduction of the first D_2O pulse to Fe_3O_4/Na_2CO_3 at 850 °C, the rate of CO production instantaneously decreases by more than a factor of 10, and D_2 evolution is observed (Figure 7). In addition, the CO_2

Figure 7. Water pulse experiments show the relative concentration of CO_2 and water controls the contribution of hydrogen evolution and CO_2 reduction over Fe_3O_4 and Na_2CO_3 .

concentration also spikes upon D_2O introduction, indicating less CO_2 is consumed in the reduction reaction. The reverse occurs when the D_2O pulse stops, that is, CO production recovers instantaneously and the D_2 signal decreases to baseline. The pathway for oxidizing Fe(II) to Fe(III) can be controlled by the relative amounts of CO_2 and water present until the Fe(II) species is exhausted. CO_2 reduction and hydrogen evolution reactions also take place on Fe_3O_4/Li_2CO_3 and Fe_3O_4/K_2CO_3 (Figure 8). The CO

Figure 8. Reactions of Fe_3O_4 with Li_2CO_3 and K_2CO_3 show both CO_2 reduction and hydrogen evolution.

evolution during the temperature ramp-and-hold to 850 °C in Ar starts at 680 and 815 <u>°C for Fe₃O₄/Li₂CO₃ and Fe₃O₄/K₂CO₃, respectively. Water (D₂O) was introduced at 850 °C after the CO signal returns to baseline, and the amounts of D₂ produced account for approximately 20% and 10% of the Fe(II) in Fe₃O₄/Li₂CO₃ and Fe₃O₄/K₂CO₃ respectively. The temperatures for the onset of the D₂ evolution for Fe₃O₄ and carbonates during the temperature ramp-and-hold in D₂O/Ar (5%/95%) are all around 500 °C (Supporting Information, Figure S1).</u>

The powder XRD patterns show only the AFeO₂ (A = Li, Na, and K) phases after the temperature ramp-and-hold to 850 °C in Ar (Figure 9). These results are consistent with the observation

Figure 9. XRD patterns of solids collected after reacting the physical mixture of Fe_3O_4 and alkali carbonates in the absence and presence of D_2O at 850 °C.

that 80% or more of the Fe(II) in Fe₃O₄ is oxidized to Fe(III) by the CO₂ from the carbonates. No detectable change was observed for the solids collected before and after the introduction of water at 850 °C for all Fe₃O₄ and alkali carbonate systems.

Sodium and potassium can be removed from the iron oxide structure via <u>the water/CO₂</u> treatment, resulting in a hydrated

Fe(III) phase, whereas Li cation removal from LiFeO₂ cannot be achieved under similar conditions.

Co₃O₄ and Alkali Carbonates (Li₂CO₃, Na₂CO₃, and K₂CO₃). No CO₂ reduction was observed during the temperature ramp-and-hold to 850 °C for Co₃O₄ with all three alkali carbonates (Li₂CO₃, Na₂CO₃, and K₂CO₃) in Ar; nor did hydrogen evolution occur upon the introduction of D₂O at 850 °C. However, Co₃O₄ does react with Li₂CO₃ during the temperature ramp to 850 °C, as evidenced by the LiCoO₂ and Li_{0.21}Co_{0.79}O phases identified by powder XRD measurement of the solid collected after the thermal treatment (Figure 10) and

Figure 10. Powder XRD patterns of the solid collected after reacting Co_3O_4 with Li_2CO_3 , Na_2CO_3 , and K_2CO_3 at 850 °C in the absence ((i), (iii), and (v), respectively) and presence ((ii), (iv), and (vi), respectively) of water.

the sharp CO₂ evolution peak at 575 °C (Figure 11). A CO₂ evolution peak occurs at ~850 °C and <u>has a long tail for both</u> Co₃O₄/Na₂CO₃ and Co₃O₄/K₂CO₃ mixtures during the temperature ramp-and-hold procedure. The total amount of CO₂ evolved is close to that expected for total decomposition of Na₂CO₃ and K₂CO₃. No sodium or potassium-containing phase is identified by XRD after the temperature and hold procedure for Co₃O₄/Na₂CO₃ and Co₃O₄/K₂CO₃, also suggesting the total decomposition of the carbonates. The lack of crystalline sodium or potassium containing phases might be attributed to the hydroscopic nature of sodium and potassium oxides and <u>hydroxides</u>. The XRD patterns show little change after the introduction of water at 850 °C for all alkali carbonates, consistent with the lack of hydrogen evolution.

Thermal Reduction of the Metal Oxides. After removing alkali cation from the metal oxide structure, the solids are subject to temperature ramp-and-hold procedures in Ar to thermally reduce to the spinel oxides (Figure 12). The alkali cation extracted Mn(III) and Fe(III) oxides are fully reduced to Mn_3O_4 and Fe_3O_4 at 850 and 1150 °C, respectively, similar to the temperatures for thermal reduction of Mn_2O_3 and Fe_2O_3 . Co_3O_4 is reduced to CoO during the temperature ramp of the $Co_3O_4/$

Figure 11. Reaction of Co_3O_4 with Li_2CO_3 ((i) and (ii)), Na_2CO_3 ((iii) and (iv)), and K_2CO_3 ((v) and (vi)) during the temperature ramp-andhold procedure to 850 °C in Ar. (vii) shows the control experiment of thermal reduction of Co_3O_4 to CoO, releasing O_2 .

 Na_2CO_3 mixture to 850 °C, as evidenced by the powder XRD measurement and the O_2 evolution peak at ~850 °C for pure Co_3O_4 .

DISCUSSION

Comparison of Reactivity among Alkali Carbonates. The ability of alkali carbonates to promote hydrogen evolution and CO₂ reduction with a given metal oxide that has a spinel structure follows the descending order: <u>Li₂CO₃ > Na₂CO₃ ></u> K_2CO_3 (e.g., evaluated by the onset temperatures for hydrogen evolution and CO₂ reduction reactions on various combinations of Mn_3O_4 and alkali carbonates (Table 1)). D_2 starts to evolve on Li_2CO_3/Mn_3O_4 at 540 °C, and in contrast no detectable amount of D₂ was observed on Na₂CO₃/Mn₃O₄ until 850 °C. In addition, the peak rate of D_2 evolution on Li_2CO_3/Mn_3O_4 is ~50 times that measured from Na₂CO₃/Mn₃O₄. No D₂ evolution is detected for K₂CO₃/Mn₃O₄ at reaction temperature up to 850 °C. For the CO₂ reduction reaction, the onset temperatures for CO evolution are 675, 735, and 805 °C for Li₂CO₃/Fe₃O₄, $Na_2CO_3/Fe_3O_4\!\!$ and $K_2CO_3/Fe_3O_4\!\!$ respectively, further confirming the trend in reactivity for the carbonates investigated.

Reactivities of various combinations of spinel metal oxides and alkali carbonates for hydrogen evolution and CO₂ reduction reactions are summarized in Figures 13 and 14, respectively.

Hydrogen evolution @850°C	Fe ₃ O ₄	Mn ₃ O ₄	Co ₃ O ₄
Li ₂ CO ₃	~	~	×
Na ₂ CO ₃	~	~	×
K ₂ CO ₃	~	×	×

Figure 13. Summary of the combinations of spinel metal oxides and alkali carbonates for hydrogen evolution reaction at 850 $^\circ$ C.

CO ₂ reduction @850°C	Fe ₃ O ₄	Mn ₃ O ₄	Co ₃ O ₄
Li ₂ CO ₃	~	~	×
Na ₂ CO ₃	r	×	×
K ₂ CO ₃	~	×	×

Figure 14. Summary of the combinations of spinel metal oxides and alkali carbonates for CO_2 reduction reaction at 850 °C.

Comparison of Reactivity among the Spinel Metal Oxides. The reactivity for hydrogen evolution and CO_2 reduction reactions of spinel metal oxides with a given alkali carbonate follows the descending order: <u>Fe₃O₄ > Mn₃O₄ ></u> <u>Co₃O₄</u>. Hydrogen evolution occurs on Fe₃O₄ with all three alkali carbonates, whereas Mn₃O₄ must be combined with the more reactive carbonates, that is, Li₂CO₃ and Na₂CO₃, for the evolution of hydrogen to be observed. For Co₃O₄, hydrogen evolution does not occur even when it is combined with the most reactive lithium carbonate. This reactivity trend is more pronounced for the CO₂ reduction reaction, which occurs on all Fe₃O₄ containing samples with alkali carbonates. In contrast, only when Mn₃O₄ is combined with lithium carbonate can CO

Figure 12. Thermal reduction of (a) Co_3O_4 , (b) Na ion extracted Mn_2O_3 , and (c) Na ion extracted Fe_2O_3 .

G

evolution be detected. None of the Co_3O_4 containing samples is active for CO_2 reduction at or below 850 °C.

Comparison of Ion Extraction and Thermal Reduction of Metal Oxides. The extraction of alkali cations from the alkali metal(III) oxides is key to being able to close the thermochemical cycle at reasonable temperatures (<1000 °C), since alkali metal(III) oxides cannot easily be thermally reduced (<1500 °C). The degree of difficulty for alkali cation extraction parallels the reactivity of the corresponding alkali carbonates: $\text{Li}^{\pm} > \text{Na}^{\pm} >$ K^{\pm} . No appreciable lithium extraction is observed for LiFeO₂ and LiMnO₂, whereas almost complete sodium extraction can be achieved for both NaFeO₂ and NaMnO₂ (Figure 15). Furthermore, complete potassium cation removal can also be achieved by the water/CO₂ treatment from KFeO₂.

Alkali ion extraction @80°C (aq.)	Fe ₃ O ₄	Mn ₃ O ₄	Co ₃ O ₄
Li ₂ CO ₃	×	×	NA
Na ₂ CO ₃	~	~	NA
K ₂ CO ₃	v	NA	NA

Figure 15. Summary of alkali ion extraction from the alkali metal salts formed in the hydrogen evolution reaction in an aqueous suspension at 80 °C in the presence of CO_2 .

Tuning the Operating Temperature of Thermochemical Cycles. A general trade-off exists between the temperatures of oxidation $(M(II) \rightarrow M(III))$ and reduction $(M(III) \rightarrow M(II))$ reactions of the metal species in the thermochemical cycle presented in this work: the lower the reaction temperature in one direction is generally compensated by a higher reaction temperature in the other direction. For example, hydrogen evolution temperatures for Fe₃O₄-based cycles are lower than those of Mn_3O_4 -based cycles (Table 1); whereas the complete thermal reduction of Fe₂O₃ to Fe₃O₄ ($\sim 1150 \ ^{\circ}C$) occurs at higher temperature than that of Mn_2O_3 to Mn_3O_4 (~850 °C) (Figure 12). The range of heat sources a specific thermochemical cycle can take advantage of is often limited by the step with the highest operating temperature. Therefore, metal oxides with balanced redox properties, that is, with hydrogen evolution and thermal reduction reactions occurring at similar temperatures, lead to low overall operating temperature. The Mn₃O₄-based thermochemical cycle falls in that category, as the hydrogen evolution and thermal reduction reactions both occur at ~850 °C.

CONCLUSIONS

Low-temperature thermochemical cycles for water splitting and CO_2 reduction involving spinel metal oxides and alkali carbonates were investigated. The reactivity sequence for hydrogen evolution reaction of metal oxides with a given alkali carbonate is $Fe_3O_4 > Mn_3O_4 > Co_3O_4$; whereas that of alkali carbonates with a given metal oxide is $Li_2CO_3 > Na_2CO_3 > K_2CO_3$. Hydrogen evolution and CO_2 reduction reactions occur at lower temperature on the more reactive combinations of metal oxide and alkali carbonate; however, thermal reduction temperature is higher and the alkali ion extraction is more difficult for the

more active metal oxide and alkali carbonate, respectively. Mn_3O_4/Na_2CO_3 appears to be the best combination in that the temperatures required for hydrogen evolution and thermal reduction of metal oxide are similar. In addition, complete alkali ion extraction can be achieved for the Mn_3O_4/Na_2CO_3 combination.

ASSOCIATED CONTENT

Supporting Information

Further details are given in Figure S1. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mdavis@cheme.caltech.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support of this work was provided by a donation from Mr. and Mrs. Lewis W. van Amerongen. The authors would like to thank Dr. J. Labinger for helpful discussions of this work.

REFERENCES

(1) Kehlhofer, R.; Rukes, B.; Hannemann, F.; Stirnimann, F. *Combined-Cycle Gas & Steam Turbine Power Plants*; PennWell Books: Tulsa, OK, 2009.

(2) Abanades, S.; Legal, A.; Cordier, A.; Peraudeau, G.; Flamant, G.; Julbe, A. J. Mater. Sci. 2010, 45, 4163–4173.

(3) Chueh, W. C.; Falter, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A. *Science* **2010**, *330*, 1797–1801.

(4) Rosen, M. A. Energy 2010, 35, 1068-1076.

(5) Forsberg, C. Prog. Nucl. Energy 2005, 47, 32-43.

(6) Brown, L. C.; Besenbruch, G. E.; Schultz, K. R.; Marshall, A. C.; Showalter, S. K.; Pickard, P. S.; Funk, J. F. In *Proceedings of the International Congress on Advances in Nuclear Power Plants*; 2002

(7) Xu, B.; Bhawe, Y.; Davis, M. E. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 9260–9264.

(8) Meredig, B.; Wolverton, C. Phys. Rev. B 2009, 80, 245119.

(9) Kreider, P.; Funke, H.; Cuche, K.; Schmidt, M.; Weimer, A. W. Int. J. Hydrogen Energy **2011**, *36*, 7028–7037.

(10) Francis, T.; Lichty, P.; Weimer, A. W. Chem. Eng. Sci. 2010, 65, 3709–3717.

(11) Sturzenegger, M.; Ganz, J.; Nüesch, P.; Schelling, T. J. Phys. IV France 1999, 09, Pr3-331-Pr3-335.

(12) Sturzenegger, M.; Nüesch, P. Energy 1999, 24, 959-970.

(13) Kaneko, H.; Hosokawa, Y.; Gokon, N.; Kojima, N.; Hasegawa, N.; Kitamura, M.; Tamaura, Y. J. Phys. Chem. Solids **2001**, 62, 1341–1347.

(14) Xu, B.; Madix, R. J.; Friend, C. M. J. Am. Chem. Soc. 2010, 132, 16571-16580.